• Title/Summary/Keyword: Friction Disturbance

Search Result 138, Processing Time 0.032 seconds

Experiments of Force Control Algorithms for Compliant Robot Motion

  • Kim, Dong-Hee;Park, Jong-Hyeon;Song, Ji-Hyuk;Hur, Jong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1786-1790
    • /
    • 2004
  • The main objective of this paper is to analyze the performance of various force control algorithms in improving and adjusting the compliance of industrial robots in contact with their environment. Some of fundamental force control algorithms such as sensorless control, impedance control and hybrid position/force control are theoretically analyzed and simulated for various situations of an environment, and then a series of experiments using them were performed. In this paper, a control scheme to use position control in implementing the impedance control was investigated in order to nullify the effect of joint friction. The new reference trajectory is generated using contact force feedback and original desired trajectory. And an inner position control loop is designed to provide accurate position tracking for the new reference trajectory and good disturbance rejection. Experiments to insert a peg in a hole (so-called the peg-in-a-hole task) were performed with HILS (hardware-in-theloop simulation) system based on the results of the analyses and simulations on the characteristics of each control algorithm. The experiments showed that various force control methods improved the performance of robots in close contact with the environment by adjusting their compliance with respect to an arbitrary set of coordinates.

  • PDF

A Study on the Robust Control of Horizontal-Shaft Magnetic Bearing System Considering Perturbation (불확실성을 고려한 횡축형 자기 베어링 시스템의 로버스트 제어에 관한 연구)

  • Kim, Chang-Hwa;Jung, Byung-Gun;Yang, Joo-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.92-101
    • /
    • 2010
  • Recently, the magnetic bearings which have many advantages such as no noise, less mechanical friction are widely applied to the suspension of rotors on the rotary machineries. However, the magnetic bearing system is inherently unstable, nonlinear and MIMO(multi-input-multi-output) system as well. In this paper, we design a state feedback controller using linear matrix inequality(LMI) to the multi-objective synthesis, for the magnetic bearing system with integral type servo system. The design objectives include $H_{\infty}$ performance, asymptotic disturbance rejection, and time-domain constraints on the closed-loop pole location. The results of computer simulation show the validity of the designed controller.

Heat Transfer and Pressure Drop Characteristics of a Horizontal Channel Filled with Porous Media (다공성매질을 삽입한 수평채널의 열전달 및 압력강하 특성)

  • Son, Young-Seok;Shin, Jee-Young;Cho, Young-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.244-251
    • /
    • 2009
  • Porous media have especially large surface area per volume, which contain complex fluid passage. If porous media can be applied to cool a CPU or an electronic device with large heat dissipation, it could result in heat transfer enhancement due to the enlargement of the heat transfer area and the flow disturbance. This study is aimed to identify the heat transfer and pressure drop characteristics of high-porosity metal foams in a horizontal channel. Experiment is performed with the various heat flux, velocity and pore density conditions. Permeabilities, which is deduced from Non-Darcy flow model, become lower with increasing pore density. Nusselt number also decreases with higher pore density. High pore density with same porosity case shows higher pressure loss due to the increase of surface area per unit volume. The fiction factor decreases rapidly with increase of Reynolds number in Darcy flow region. However, it converges to a constant value of the Ergun coefficient in Non-Darcy flow region.

Evaluations of the Robustness of Guidance Controller for a Bimodal Tram (바이모달트램 안내제어기의 강인성 평가)

  • Yun, Kyong-Han;Lee, Yong-Sang;Min, Kyung-Deuk;Kim, Young-Chol;Byun, Yeun-Sub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1924-1934
    • /
    • 2011
  • This paper is concerned with the robustness evaluations of the guidance controller for a bimodal tram which is being developed by the Korea Railroad Research Institute (KRRI). The bimodal tram is an all-wheel steered multiple-articulated vehicle as a new kind of transportation vehicle. This vehicle has to be equipped with an automatic guidance system. In [1], such a controller has been recently proposed. However, since the performance is affected by weight change of the vehicle due to number of the passenger, model parameter uncertainties depending on the state of friction and the elasticity of the tire, and a typhoon, the controller designed must be examined with these conditions. As expected, because the vehicle dynamics is highly nonlinear, for the sake of investigating the robustness of the controller we compose two simulation ways based on the vehicle models which are implemented by the ADAMS and the MATLAB/LabVIEW toolboxes. Different uncertainties and a typhoon disturbance have been considered for the simulation conditions. Simulation results are shown.

A Study for Heavy Duty Coating by Corrosion of the Steel Bridge (철도용 강교량의 부식에 대한 중방식 도장의 특성연구)

  • Kong, Byung-Seung;Kim, Min-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.345-351
    • /
    • 2007
  • The research which it sees will confront to the coating with paint material and a coating with paint public law application of the river bridge and it will present it will sleep and it will execute, it will reach and a comparison - an analysis from the research which it tries to respect middle of special environment the polyurethane system which is a method coating with paint system and fluorine resin system, against a ceramic system it executed more an objectivity and rational fundamental data. With research method against each coating with paint evening sunlight a research investigation material and structure, it separated with spatial-temporal characteristic and economic viewpoint it executed. When considering overview from material viewpoint, fluorine resin system ceramic system polyurethane system pure with it is judged with the fact that it is excellent. There is a possibility of saying that the coefficient of friction of the fluorine resin system which uses the weapon quality zinc end coating compound ever so hard and polyurethane system is excellent ceramic system than from structure viewpoint. That fluorine resin system = polyurethane system ceramic system pure with it is excellent, it is judged from spatial-temporal characteristic viewpoint. It measures but it considered an internal troubles year grudge in the standard which becomes disturbance the place where it executes the market the expectation life person of the general bridge against 100 years the result fluorine resin system polyurethane system ceramic system which compares a materials unit cost pure with it appeared.

  • PDF

Design of adaptive fuzzy controller to overcome a slope of a mobile robot for driving (모바일 로봇의 경사면 극복 주행 제어를 위한 적응 퍼지 제어기 설계)

  • Park, Jong-Ho;Baek, Seung-Jun;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6034-6039
    • /
    • 2012
  • In this paper, this may appear to exacerbate it met slopes of the mobile robot moves to overcome this by driving can occur if the mobile robot system has its own sleep problems driving progress in until you hit the target and solvedriving straight driving safer model for adaptive fuzzy control method of mobile robot based control algorithm is proposed. First, we propose a model based adaptive fuzzy controller, if possible, the dynamics model of the mobile robot, including model-based controller is designed to determine if you can check the condition of the mobile robot climbing and driving the mobile robot to overcome the slope and the to overcome driving control. Enough considering the ground friction forces and ensure the stability of the mobile robot system and the disturbance compensation, etc. In this case, the controller design will be possible. In addition, the nonlinear model, the dynamic characteristics of the mobile robot control method of adaptive fuzzy control techniques in the design that you want to fully reflect Non-holonomic system of mobile robots and solve sleep problems, and will be useful enough, it was verified through computer simulations.

Characteristics of Dynamic Shear Behavior of Pile-Soil Interface Considering pH Conditions of Groundwater (지하수 pH조건을 고려한 말뚝-지반 접촉면의 동적 전단거동 특성)

  • Kwak, Chang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.5
    • /
    • pp.5-17
    • /
    • 2022
  • A pile is a type of medium for constructing superstructures in weak geotechnical conditions. A pretensioned spun high-strength concrete (PHC) pile is composed of high-strength concrete with a specified strength greater than 80 MPa. Therefore, it has advantages in resistance to axial and bending moments and quality control and management since it is manufactured in a factory. However, the skin friction of a pile, which accounts for a large portion of the pile bearing capacity, is only approximated using empirical equations or standard penetration test (SPT) N-values. Particularly, there are some poor research results on the pile-soil interface under the seismic loads in Korea. Additionally, some studies do not consider geoenvironmental elements, such as groundwater pH values. This study performs sets of cyclic simple shear tests using submerged concrete specimens for 1 month to consider pH values of groundwater and clay specimens composed of kaolinite to generate a pile-soil interface. 0.2 and 0.4 MPa of normal stress conditions are considered in the case of pH values. The disturbed state concept is employed to express the dynamic behavior of the interface, and the disturbed function parameters are newly suggested. Consequently, the largest disturbance increase under basic conditions is observed, and an early approach to the failure under low normal stress conditions is presented. The disturbance function parameters are also suggested to express this disposition quantitatively.

Applicability of Particle Crushing Model by Using PFC (PFC를 이용한 입자 파쇄 모델의 적용성 연구)

  • Jeong, Sun-Ah;Kim, Eun-Kyung;Lee, Seok-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • Granular soils having a large particle size have been used as a filling material in the construction of foundation, harbor, dam, and so on. Consequently, the shear behavior of this granular soil plays a key role in respect of stability of structures. For example, soil particle crushing occurring at the interface between structure and soil and/or within soil mass can cause a disturbance of ground characteristics and consequently induce issues in respect of stability of structures. In order to investigate the shear behavior according to an existence and nonexistence of particle crushing, numerical analyses were conducted by using the DEM (Discrete Element Method)-based software program PFC2D (Particle Flow Code). By dividing soil particle bonding model into crushing model and noncrushing model, total four particle bonding models were simulated and their results were compared. Noncrushing model included one ball model and clump model, and crushing model included cluster model and Lobo-crushing model. The combinations of soil particle followed the research results of Lobo-Guerrero and Vallejo (2005) which were composed of eight circles. The results showed that the friction angle was in order of clump model > cluster model > one ball model. The particle bonding model compared to one ball model and noncrushing model compared to crushing model showed higher shear strength. It was also concluded that the model suggested by Lobo-Guerrero and Vallejo (2005) is not appropriate to simulate the soil particle crushing.

  • PDF

The Synchronous Control System Design of a Movable Weir using Coupling Structure (커플링구조를 이용한 가동위어의 동기제어시스템 설계)

  • Yang, Kyong-Uk;Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.837-844
    • /
    • 2017
  • The weir to regulate water level in a tide generation tank is above and below carried by two electric cylinders which are mounted on right and left of weir itself. In this case, a movement difference between right and left cylinder causes unbalance of weir and friction between weir and guide. And then, the weir will not be sent to target point. In this study, a synchronous control system is developed to take accurate and quick equilibrium of the weir. The control system based on cross coupled structure consists of two I-PD controllers and a lead compensator. Each of the I-PD controllers is designed in order that the electric cylinder may exactly follow the reference signal without overshoot and input saturation. And the lead compensator is designed to achieve stable and accurate synchronization. Finally, the simulation result shows that the designed synchronous control system is effective for elimination of synchronous error.

An Experimental Study on Suppression of Cavity Development by Enlargement of Base Plate of Box-Culvert Installed at River Levee (하천제방 배수통문의 저판확폭을 통한 공동발생 억제기법 연구)

  • Kim, Jin-Man;Choi, Bong-Hyuck;Lee, Dae-Young;Jin, Young-Ji
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.55-61
    • /
    • 2011
  • Generally, the Box-Culvert in levee is destroyed by various reasons. Especially when Box-Culvert is installed over the pile foundation in soft ground, the failure occurrs for 1) the weakness of compaction in Box-Culvert side by the differential settlement between outer ground and inner soil prism, 2) hydraulic fracturing and disturbance of Box-Culvert side soil by the repeated acting of seepage pressure at flood time. Also the side of Box-Culvert is difficult to compact and the shear resistance is reduced by more than 1/3 for the reduction of friction caused by the difference of material property. In this study, a series of model tests are conducted for the analysis of the development mechanism of outer ground and inner soil prism by the differential settlement using the pile foundation in soft ground, and cavity suppressed technique is suggested by the analysis of base plate enlargement effect.