• Title/Summary/Keyword: Friction Disturbance

Search Result 138, Processing Time 0.028 seconds

Vibration Control of Flexible SCARA Robots (유연한 수평 다관절 로봇의 진동제어)

  • 임승철;용대중
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.387-392
    • /
    • 1997
  • This paper concerns a SCARA robot with the flexible forearm linked to the rigid upper arm. The equations of motion are derived by the Lagrangian mechanics. For controller design, the perturbation approach is taken to separate the original equations of motion into linear equations describing small perturbed motions and nonlinear equations describing purely rigid motion of the robot. To effect the desired payload motion, open loop control inputs are determined based on the inverse dynamics of the latter. In order to reduce the positional error during maneuver, an active vibration suppression is done. To this end, a feedback control is designed for robustness against disturbance on the basis of the linear equations and the LQR theory modified to have a prescribed degree of stability. The proposed control scheme shows satisfactory performances in experiments as well as in numerical simulations.

  • PDF

리니어모터 스테이지 진직도 보상 제어

  • Gang, Min-Sik;Choe, Jeong-Deok
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.11-14
    • /
    • 2007
  • An additive servo-system is developed to improve straightness of linear motor stages. For linear motor stages used in the field of high-precision linear motion process, high straightness accuracy is necessary as well as positioning accuracy in the longitudinal axis. In such cases, machining and assembling cost increases to improve the straightness accuracy. An electro-magnetic actuator which is relatively cost effective than any other conventional servo-systems is suggested to compensate the fixed straightness error. To overcome the compensation error due to modeling error and friction disturbance, a sliding mode control is addressed. The effectiveness of the suggested mechanism and the control are illustrated along with some experimental results.

  • PDF

Robust Adaptive Control of A HexaSlide Type Parallel Manipulator

  • Kim, Jong-Phil;Kim, Sung-Gaun;Ryu, Jeha
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.262-267
    • /
    • 2001
  • Jeha Ryu Department of Mechatronics, Kwangju Institute of Science and Technology This paper presents an application of a robust adaptive control strategy to HexaSlide type six degrees-of-freedom parallel manipulators. The HexaSlide type parallel manipulators are characterized as an architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. The proposed control law is developed based on a simplified second order system dynamic equation in joint space with uncertain mass, damper, spring, and Coulomb friction terms. These uncertain parameters are updated by an adaptation law that is derived by Lyapunov stability theorem. A robust adaptive control law by using the boundary layer is designed for the purpose of compensating for the neglected dynamic effects of the mobile platform and the six moving links that are modeled as a disturbance term. Experimental results show good and fast tracking performance.

  • PDF

Adaptive Robust Control for Robot Manipulator with the Uncertain Bound Estimation and Implementation (불확실성의 경계를 추정하는 로봇 매니퓰레이터의 적응견실제어기 설계 및 실험)

  • 한명철;하인철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.312-316
    • /
    • 2004
  • In this paper, it is presented an adaptive robust control system to implement real-time control of a robot manipulator. There are Quantitative or qualitative differences between a real robot manipulator and a robot modeling. In order to compensate these differences, uncertain factors are added to a robot modeling. The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance, etc. Also, uncertainty is often nonlinear and time-varying. In the proceeding work, we proposed a class of robust control of a robot manipulator and provided the stability analysis. In the work, we propose a class of adaptive robust control of robot manipulator with bound estimation. Through experiments, the proposed adaptive robust control scheme is proved to be an efficient control technique for real-time control of a robot system using DSP.

Sliding Mode Control of Electric Booster System (전동 부스터의 슬라이딩 모드 제어)

  • Yang, I-Jin;Choi, Kyu-Woong;Huh, Kun-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.519-525
    • /
    • 2012
  • Electric brake booster systems replace conventional pneumatic brake boosters with electric motors and rotary-todisplacement mechanisms including ECU (Electronic Control Unit). Electric booster brake systems require precise target pressure tracking and control robustness because vehicle brake systems operate properly given the large range of loading and temperature, actuator saturation, load-dependent friction. Also for the implement of imbedded control system, the controller should be selected considering the limited memory size and the cycle time problem of real brake ECU. In this study, based on these requirements, a sliding mode controller has been chosen and applied considering both model uncertainty and external disturbance. A mathematical model for the electric booster is derived and simulated. The developed sliding mode controller considering chattering problem has been compared with a conventional cascade PID controller. The effectiveness of the controller is demonstrated in some braking cases.

Trajectory Tracking Control for A Wheeled Mobile Robot (모바일 로봇의 경로 추종 제어)

  • Kim, Jin-Hwan
    • 전자공학회논문지 IE
    • /
    • v.46 no.4
    • /
    • pp.73-77
    • /
    • 2009
  • This paper presents the trajectory tracking control for mobile robot. The designed controller consists of kinematic and dynamic controller. Kinematic controller has two gains and it reduces the trial time for gain setting as compared convectional controller with three gains. Dynamic controller includes the compensation of friction and disturbance. It can improve the performance of the trajectory tracking under the various environment. Simulation results shows that the proposed controller has a stable performance.

Sliding Mode Control of an Active Magnetic Bearing System (능동자기베어링계의 슬라이딩모드 제어)

  • 강민식
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.439-448
    • /
    • 2004
  • Magnetic bearing is an attractive device in precision engineering field because of its non-contacting nature and controllability of its dynamic characteristics. This paper provides a method of designing a sliding mode control for an active magnetic hearing(AMB) system which is used to support the elevation axis of a target tracking sight instead of mechanical bearings to eliminate the effect of mechanical friction. In such system, the axis should be levitated and supported within a predetermined air gap while AMB is excited by base motion. Experimental results showed that the sliding mode control is effective in disturbance rejection than conventional PID-control without any additive measurements.

Model-Based Monitoring of the Turning Force (모델에 근거한 선삭력 모니터링)

  • 허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.11-15
    • /
    • 1999
  • Monitoring of the cutting force signals in cutting process has been well emphasized in machine tool communities. Although the cutting force can be directly measured by a tool dynamometer, this method is not always feasible because of high cost and limitations in setup. In this paper an indirect cutting force monitoring system is developed so that the cutting force in turning process is estimated based on a AC spindle drive model. This monitoring system considers the cutting force as a disturbance input to the spindle drive and estimates the cutting force based on the inverse dynamic model. The inverse dynamic model represents the dynamic relation between the cutting force, the motor torque and the motor power. The proposed monitoring system is realized on a CNC lathe and its estimation performance is evaluated experimentally.

  • PDF

Adaptive robust hybrid position/force control for a uncertain robot manipulator

  • Ha, In-Chul;Han, Myung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.426-426
    • /
    • 2000
  • When real robot manipulators arc mathematically modeled, uncertainties are not avoidable. The uncertainties are often nonlinear and time varying, The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance and etc. We proposed a class of robust hybrid position/force control of manipulators and provided the stability analysis in the previous work. In the work, we propose a class of adaptive robust hybrid position/force control of manipulators with bound estimation and the stability based on Lyapunov function is presented. Especially, this controller does not need the information of uncertainty bound. The simulation results are provided to show the effectiveness of the algorithm.

  • PDF

The Study on Position Control of Gantry Crane Spreader (갠트리 크레인 스프레더의 웨치제어에 관한 연구)

  • 이성섭;이형우;박찬훈;박경택;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.307-307
    • /
    • 2000
  • The swing motion of the spreader during and after movement causes an efficiency problem of position control in unmaned gantry crane. The objective of this research is to design implementable stabilizing controllers that minimize the swing motion of spreader in precise position control. The dynamic equations related to trolley, rope, and spreader are derived. For constitute a similar actual system, we introduced a conception of spring and damper in the connector. It is located between the trolley and link that is used in stead of rope. We derived dynamic equation by appliance that friction and external disturbance are occurred to the connector. We constituted of position servo system and velocity servo system for the control of position and velocity of the trolley and constituted of lag compensator system for the control of sway of the spreader. And we will show an effect of the proposed system in this research finally.

  • PDF