• Title/Summary/Keyword: Friction Damper

Search Result 191, Processing Time 0.025 seconds

Performance-based Design of 300 m Vertical City "ABENO HARUKAS"

  • Hirakawa, Kiyoaki;Saburi, Kazuhiro;Kushima, Souichirou;Kojima, Kazutaka
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.35-48
    • /
    • 2014
  • In designing a 300 meter high skyscraper expected to be the tallest building in Japan, an earthquake-ridden country, we launched on the full-scale performance based design to ensure redundancy and establish new specifications using below new techniques. The following new techniques are applied because the existing techniques/materials are not enough to meet the established design criteria for the large-scale, irregularly-shaped building, and earth-conscious material saving and construction streamlining for reconstructing a station building are also required: ${\bullet}$ High strength materials: Concrete filled steel tube ("CFT") columns made of high-strength concrete and steels; ${\bullet}$ New joint system: Combination of outer diaphragm and aluminium spray jointing; ${\bullet}$ Various dampers including corrugated steel-plate walls, rotational friction dampers, oil dampers, and inverted-pendulum adaptive tuned mass damper (ATMD): Installed as appropriate; and ${\bullet}$ Foundation system: Piled raft foundation, soil cement earth-retaining wall construction, and beer bottle shaped high-strength CFT piles.

Seismic resilience evaluation of RC-MRFs equipped with passive damping devices

  • Kamaludin, Puteri Nihal Che;Kassem, Moustafa Moufid;Farsangi, Ehsan Noroozinejad;Nazri, Fadzli Mohamed;Yamaguchi, Eiki
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.391-405
    • /
    • 2020
  • The use of passive energy dissipation devices has been widely used in the construction industry to minimize the probability of damage occurred under intense ground motion. In this study, collapse margin ratio (CMR) and fragility curves are the main parameters in the assessment to characterize the collapse safety of the structures. The assessment is done on three types of RC frame structures, incorporating three types of dampers, viscoelastic, friction, and BRB dampers. The Incremental dynamic analyses (IDA) were performed by simulating an array of 20 strong ground motion (SGM) records considering both far-field and near-field seismic scenarios that were followed by fragility curves. With respect to far-field ground motion records, the CMR values of the selected frames indicate to be higher and reachable to safety margin more than those under near-field ground motion records that introduce a high devastating impact on the structures compared to far-field excitations. This implies that the near field impact affects the ground movements at the site by attenuation the direction and causing high-frequency filtration. Besides that, the results show that the viscoelastic damper gives better performance for the structures in terms of reducing the damages compared to the other energy dissipation devices during earthquakes.

A Study on Aseismatic Performance of Base Isolation Systems Using Resilient Friction Pot Bearing (탄성마찰포트받침을 적용한 교량의 내진성능에 관한연구)

  • Oh, Ju;Hyeon, Gi Hwan;Park, Yeon Su;Park, Seong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.127-134
    • /
    • 2008
  • For more districted seismic design and attemped multi-bridge continuity, the existing seismic design is difficulted to treat seismic activity. So, many company applied multi-fixed point and damper or isolator, which is effective for decreasing seismic energy, on period shift, decentralization and damping. But, there is hard to design special bridge with adjusted seismic system because of absence seismic device and insufficient design experience. Therefore, the study on behavior characteristics of designed bridge with various seismic device is performed to utilize the result of this for selection of adequate seismic device.

Equivalent damping ratio of a friction damper installed in a structure under collapse load (붕괴하중을 받는 건물에 설치된 마찰감쇠기의 등가감쇠비)

  • Seong, Ji-Young;Min, Kyung-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.602-605
    • /
    • 2011
  • 본 논문에서는 마찰감쇠기가 설치된 건물이 붕괴하중을 받을 때의 에너지소산능력을 고려하여 등가감쇠비를 유도하였다. 마찰감쇠기는 주로 지진과 같은 수평하중에 대한 에너지를 소산하기위해 설치된다. 마찰감쇠기를 대각 가새형으로 설치하면 수평하중에 대한 저항력뿐 만아니라 수직하중에 대한 저항성능도 발휘된다. 건물에 설치된 마찰감쇠기는 외력의 크기에 따라 정지와 운동의 상태를 반복하여 외부 입력에너지를 소산시키기 때문에 외력과 응답관계가 비선형이다. 건물은 고유의 점성감쇠를 가지므로 마찰감쇠기가 설치된 건물은 마찰과 점성감쇠를 동시에 고려해야하므로 해석적인 정해를 구하기가 어렵다. 에너지 평형을 이용하여 등가감쇠비를 구하고 운동방정식을 등가선형화하면 쉽게 저항 성능을 파악할 수 있다. 우선 건물에 영향을 미치는 것은 감쇠이므로 감쇠의 영향력을 마찰력비, ${\gamma}_c$로 나타내었다. 둘째, 정해를 마찰력비로 표현하여 유도하고 응답특성을 파악하였다. 셋째, 에너지 균형식을 통해 등가감쇠비를 산정하였다. 마지막으로 등가감쇠비를 검증하기 위하여 등가감쇠비를 이용하여 등가선형화한 응답과 실제 마찰감쇠기를 설치하여 비선형 수치해석한 결과와 비교, 검증하였다.

  • PDF

Development of ETMD for Improving TMD Control Performance (TMD 제어성능 개선을 위한 ETMD 개발)

  • Jeon, Seung gon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.157-164
    • /
    • 2022
  • The TMD has a simpler structure than other vibration control devices and shows excellent control performance for the standardized vibration occurring in the structure. However, when the vibration cycle of the structure coincides with the vibration cycle of the TMD due to the sudden external loads, the off-tuning occurs, which threatens the structure while increasing the vibration width of the TMD. Therefore, Electromagnetic Tuned Mass Damper (ETMD) was developed as a semi-active TMD that prevents off-tuning while exhibiting excellent control performance like TMD. To verify the control performance of the developed ETMD, the bending behavior control performance evaluation experiment using a simple beam bridge was performed. The experimental method compared the mutual control power by experimenting with the existing TMD method and the developed ETMD under nine excitation frequency conditions. As a result, it was confirmed that the control effect of ETMD was about 4.85% higher than that of TMD at 3.02Hz, which generates the maximum displacement in the simple beam bridge. Also, the off-tuning occurred in some excitation conditions when using TMD, although the off-tuning did not occur when using ETMD. Therefore, the excellent control performance of the ETMD developed in this study was verified.

Nonlinear structural model updating based on the Deep Belief Network

  • Mo, Ye;Wang, Zuo-Cai;Chen, Genda;Ding, Ya-Jie;Ge, Bi
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.729-746
    • /
    • 2022
  • In this paper, a nonlinear structural model updating methodology based on the Deep Belief Network (DBN) is proposed. Firstly, the instantaneous parameters of the vibration responses are obtained by the discrete analytical mode decomposition (DAMD) method and the Hilbert transform (HT). The instantaneous parameters are regarded as the independent variables, and the nonlinear model parameters are considered as the dependent variables. Then the DBN is utilized for approximating the nonlinear mapping relationship between them. At last, the instantaneous parameters of the measured vibration responses are fed into the well-trained DBN. Owing to the strong learning and generalization abilities of the DBN, the updated nonlinear model parameters can be directly estimated. Two nonlinear shear-type structure models under two types of excitation and various noise levels are adopted as numerical simulations to validate the effectiveness of the proposed approach. The nonlinear properties of the structure model are simulated via the hysteretic parameters of a Bouc-Wen model and a Giuffré-Menegotto-Pinto model, respectively. Besides, the proposed approach is verified by a three-story shear-type frame with a piezoelectric friction damper (PFD). Simulated and experimental results suggest that the nonlinear model updating approach has high computational efficiency and precision.

The relationship between time-varying eccentricity of load with the corner lateral displacement response of steel structure during an earthquake

  • Takin, Kambiz;Hashemi, Behrokh H.;Nekooei, Masoud
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.801-812
    • /
    • 2016
  • In an actual design, none of the structures with shear behaviors will be designed for torsional moments. Any failure or damages to roofs, infills, shear walls, and braces caused by an earthquake, will inevitably result in relocation of center of mass and rigidity of the structure. With these changes, the dynamic characteristics of structure could be changed during an earthquake at any moment. The main objective of this paper is to obtain the relationship between time-varying eccentricity of load and corner lateral displacement. In this study, various methods have been used to determine the structural response for time-varying lateral corner displacement. As will be seen below, some of the structural calculation methods result in a significant deviation from the actual results, although these methods include the interaction effects of modes. Controlling the lateral displacement of structure can be performed in different ways such as, passive dampers, friction dampers, semi-active systems including the MR damper and active Systems. Selecting and locating these control systems is very important to bring the maximum safety with minimum cost into the structure. According to this study will be show the relation between the corner lateral displacements of structure and time-varying eccentricity by different kind of methods during an earthquake. This study will show that the response of the structure at the corners due to an earthquake can be very destructive and because of changing the eccentricity of load, calculating the maximum possible response of system can be carried out by this method. Finally, some kind of systems must be used for controlling these displacements. The results shows that, the CQC, DSC and exact methods is comply each other but the results of Vanmark method is not comfortable for these kind of buildings.

Test of RC Structures with Friction Damper (마찰형 댐퍼가 있는 RC 구조물에 관한 실험적 연구)

  • Kim, Young Ju;Ahn, Tae Sang;Lee, Chang Hwan;Kim, Sang Dae
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.30-30
    • /
    • 2011
  • 국내의 내진설계 기준은 1988년에 처음 도입되었으며, 최근 점차 강화되고 있는 실정이다. 공동주택에 주로 적용되는 전단벽식 구조시스템에서 증가된 지진력에 저항하기 위해서는 벽량과 철근이 증가하게 되어 공사비가 상승하게 된다. 이러한 단점을 보완하기 위한 제진설계의 필요성이 대두되고 있는 실정인데, 기존의 제진장치는 주로 가새형 또는 벽체형을 대부분이라 평면계획에 제약이 있다. 따라서 전단벽식 구조의 공동주택의 제진설계 시에는 우리나라와 같은 중 약진 지역에 적합하고 저렴한 비용으로 충분한 내진성능과 평면의 가변성을 확보할 수 있는 댐퍼의 선택이 필요하다. 본 연구의 목적은 기존의 가새형 및 벽체형 제진장치의 국내 공동주택 적용시의 문제점인 평면의 가변성 확보에 유리하고, 수동형 제진장치의 장점을 추구할 수 있는 마찰댐퍼를 삽입한 커플링보 제진시스템의 내진성능을 조사하는 것이다. 내진성능을 평가하기 위해서 실대형 커플링보 실험체를 계획하고 제작하였다. 실험체는 2개로 구성되어 있으며, 하나는 기존의 철근배근 상세를 갖는 철근콘크리트 커플링보 실험체와 커플링보에 마찰댐퍼가 삽입된 실험체이다. 횡하중에 대한 성능을 평가하기 위해서 유사정적 반복가력실험을 실시하였다. 엑츄에이터로부터 실험체 상보의 가력지그를 통해 하중이 전달되도록 하였으며, 가력은 최초 0.25%의 층간변형각부터 변위제어를 통해 목표 층간변형각인 1.5% 이상까지 진행되도록 하였다. 실험결과, 두 실험체의 이력곡선과 에너지 흡수능력을 평가하였다. RC 실험체는 핀칭현상이 관찰되었고, 가력이 진행됨에 따라 커플링보와 벽체에서의 균열이 확산되어 종국적으로 취성적인 커플링보의 전단파괴가 발생하였다. 마찰댐퍼를 삽입한 실험체는 계획된 마찰거동이 잘 발휘되어 목표 층간변형각인 1.5%까지 이선형거동이 잘 나타났다. 최대 내력은 RC 실험체가 3배 이상 크지만, 누적층간변형각에 따른 에너지 흡수능력은 마찰댐퍼 실험체가 2배 이상 우수한 결과를 보였으며, 커플링보 및 벽체에서의 균열이 매우 저감되었다.

  • PDF

The Analysis of Correlation Major System Factors with the Performance of Smoke Control Systems Using Pressure Differentials (차압제연설비의 성능과 관련된 시스템 및 환경 변수와의 상관성 분석)

  • Yeo, Yong-Ju;Kim, Hak-Jung;Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.97-105
    • /
    • 2010
  • The smoke control systems using pressure differentials are already well known as the most reliable method to prevent the smoke infiltration into the emergency stairs or safe spaces. However, it is true that many problems are domestically pointed out due to the insufficient understanding and technology on the smoke control systems using pressure differentials. In this regard, this work analyzed the effect of major factors for smoke control system using pressure differentials such as a duct area, opening area of air supply damper, improvement on open vestibules, stack effect and location of air supply. In conclusion, adequate pressure differentials can not be maintained in small duct because the smaller duct area have the large friction loss. Especially, It is confirmed that the major factor for deterioration of smoke control system performance is stack effect that makes pressure differentials smaller in the lower floors.

Performance Evaluation of Vibration Control of a Smart Top-Story Isolation System (스마트 최상층 면진시스템의 진동제어 성능평가)

  • Kang, Joo-Won;Kim, Tae-Ho;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.3
    • /
    • pp.49-56
    • /
    • 2010
  • In this study, the control performance of a smart top-story isolation system for tall buildings subjected to wind excitation was investigated. To this end, a 77-story tall building structure was employed and wind loads obtained from wind tunnel test were used for numerical simulations. The top-story of an example structure is separated from the main structure by a smart base isolation system composed of friction pendulum systems (FPS) and MR dampers. The primary purpose of the smart top-story isolation system is to mitigate the dynamic responses of the main structure, but the excessive movement of the isolated top story may cause the unstableness of the building structure. Therefore, the skyhook control algorithm was used to effectively reduce both responses of the isolated top story and the main structure. The control performance of the proposed smart top-story isolation system was investigated in comparison with that of the passive top-story isolation system. It has been shown from numerical simulation results that the smart top-story isolation system can effectively reduce wind-induced responses of the example building structure compared to the passive top-story isolation system with reduction of the top-story movement.

  • PDF