• Title/Summary/Keyword: Friction/Wear

Search Result 1,231, Processing Time 0.024 seconds

The Roles of Reinforcing Fibers on the Performance of Automotive Brake Pads (자동차용 마찰재의 성능에 미치는 강화섬유의 역할)

  • Lim, Hyun-Woo;Yoon, Ho-Gyu;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.173-179
    • /
    • 2000
  • The friction and wear characteristics of brake friction materials reinforced with aramid fiber, carbon fiber, glass fiber, and potassium titanate whiskers were investigated using a pad-on-disk type friction tester. In particular, the morphology of rubbing surfaces was carefully investigated to correlate the friction performance and properties of transfer films. The aramid fiber reinforced specimen showed severe oscillation of friction coefficient at low speed and low applied pressure. The carbon fiber reinforced specimen showing better friction stability exhibited uniform and stable transfer film than any other specimens. The glass fiber reinforced specimen showed unstable friction changes at high speed and high-applied pressure and the non-uniform transfer film was observed in both friction material and rotor surface. The potassium titanate whiskers reinforced specimen showed stable coherent transfer film. The wear test exhibited the potassium titanate whiskers reinforced specimen was lowest in wear amount and glass fiber reinforced specimen showed the severe wear.

  • PDF

A Study on the Evaluation of the Friction and Wear Properties for Normalized Ductile Cast Iron (노멀라이징 열처리한 구상 흑연 주철의 마찰.마모특성 평가에 관한 연구)

  • 김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.440-446
    • /
    • 1999
  • This study is mainly concerned with the friction and wear properties for the specimens of crank shaft which are made of ductile cast iron. The friction and wear tests were carried out for the nor-malized ductile cast iron specimens and their properties were compared with each other at reheat-ing temperatures(550^{\circC,\; 600^{\circ}C,\; 650^{\circ}$) and in dry condition at different friction velocity(0.94 m/s 1.88m/s 2.83m/s) range. After austenized at $910^{\circ}C$ it is observed that the higher the reheating temperature is the hardness becomes decrease which is supposedly attributed to the fact that the amount of pearlite austenite matrix is rduced by reheating after normalizing and that as the reheating temperature goes up the pearlite generated is less and the interval between the pearlites were widened at last to make pearlite globular. At the low velocity the friction coefficient increase in the beginning and gets stabilized as the sliding distance increases. As the friction velocity grows the friction coefficient decreases suppos-edly since the abrasive wear is heavier at low velocity than at the high velocity as the friction tem-perature at low velocity is lower than at high velocity.

  • PDF

Water Lubrication Characteristics and Effect of Nano Particles based on the Substrate (기판 종류에 따른 물 윤활 특성 및 나노 입자의 영향)

  • Kim, Hye-Gyun;Kim, Tae-Hyung;Kim, Jongkuk;Jang, Young-Jun;Kang, Yong-Jin;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.245-250
    • /
    • 2017
  • In this work, we examine pure water and water with nanoparticles to investigate water lubrication characteristics and the effect of nanoparticles as lubricant additives for different substrates. We test carbon-based coatings and metals such as high-speed steel and stainless steel in pure deionized (DI) water and DI water with nanoparticles. We investigate water lubrication characteristics and the effect of nanoparticles based on the friction coefficient and wear rate for different substrates. The investigation reveals that nanoparticles enhance the friction and wear properties of high-speed steel and stainless steel. The friction coefficient and wear rate of both high-speed steel and stainless steel decreases in DI water with nanoparticles compared with the results in pure DI water. The presence of nanoparticles in water show good lubricating effect at the contact area for both high-speed steel and stainless steel. However, for carbon-based coatings, nanoparticles do not improve friction and wear properties. Rather, the friction coefficient and wear rate increases with an increase in the concentration of nanoparticles in case of water lubrication. Because carbon-based coatings already have good tribological properties in a water environment, nanoparticles in water do not contribute toward improving the friction and wear properties of carbon-based coatings.

Effect of Contact Area on Friction and Wear Behavior in Atomic Force Microscope (원자 현미경을 이용한 접촉 면적에 따른 마찰 및 마멸 특성 분석)

  • Choi Dukhyun;Hwang Woonbong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.167-173
    • /
    • 2004
  • Recently, it has been reported that frictional behavior at nanometer scale can be different from that at macro scale. In this article, friction and wear tests were conducted using an AFM to investigate the effect of real contact area on the coefficient of friction and wear property. SiO$_2$, Hica, and SiGe were used in friction test and the AFM tip was Si$_3$N$_4$. The real contact area between an AFM tip and flat surface was calculated by the Johnson-Kendall-Roberts (JKR) theory. Wear specimen was Mica, and the diamond tip was used. We found that the coefficient of friction is constant below a critical area, but it is degraded over the area. Moreover, it is found that wear depth increased rapidly from a certain load and was degraded as a function of the number of the scanning cycles. Also, the range of scanning velocity used in this study had little effect on the wear depth.

A Study on the Friction and Wear Characteristic of TiAlN and CrAlN Coating on the SKD61 Extrusion Mold Steel for 6xxx Aluminum Alloy (6xxx계 알루미늄합금의 압출 금형용 SKD61 강재에 증착된 TiAlN, CrAlN 박막의 마찰.마모에 대한 연구)

  • Kim, Min-Suck;Kho, Jin-Hyun;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.278-282
    • /
    • 2010
  • In this research, the friction and wear characteristic behaviors of coating materials of TiAlN and CrAlN were investigated. The wear test was conducted in air and un-lubricated state using the reciprocating friction wear tester. Temperature were 50 and $120^{\circ}C$, and load were 3, 7, and 11 kgf for tests. By comparing the coefficient of friction and observing the wear microstructure, the friction and wear characteristic behaviors of TiAlN and CrAlN coating layers on SKD61 were investigated. The coefficient of friction of CrAlN coating was lower than that of TiAlN at all conditions. Therefore, CrAlN was suggested to be more advantageous coating than TiAlN for the extrusion mold of aluminum.

The Friction and Wear Characteristics of the Seat Recliner Parts Based on Lubricant Characteristics (윤활제 특성에 따른 시트 리클라이너 부품의 마찰 및 마모 특성)

  • Hong, Seok-June;Lee, Kwang-Hee;Lim, Hyun-Woo;Kim, Jae-Woong;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.183-189
    • /
    • 2019
  • The driver seat of an automobile is in direct contact with the driver and provides the driver with a safe and comfortable ride. The seat consists of a frame, a rail, and many recliners. In recent years, strength and operating force measurement testing of the recliner have become vital for designing car seats. However, performance evaluation requires expensive testing equipment, numerous seat products, and considerable time. Therefore, the trend is to reduce experimentation through interpretation. This study examines the lubrication of solid lubricant for automotive seat recliners and confirms the friction and wear performance. In this study, the lubrication behavior of solid lubricants for car seat recliners is investigated to ascertain the friction and wear performance and to provide accurate values for the strength analysis. The friction material consists of a pin and a plate made from steel, which is widely used in recliners. The friction and wear under lubrication conditions are measured by a reciprocating friction wear tester. The friction coefficient is obtained according to the load and speed. Based on the obtained results, it is possible to achieve a reduction in the error of the test value and the analysis by providing the friction coefficient and wear of the lubricant. The results can be applied to the analysis of automobile seat design.

A Study on the Friction and Wear Characteristics of TiC, TiN and Ti(CN) with PECVD Process (PECVD 공정에 의한 TiC, TiN 및 Ti(CN)의 마찰 마모 특성 연구)

  • Rhee Bong Goo;Jeon Ghan Yeol;Kim Jung Ki;Kim Dong Hyun;Oh Seong Mo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.1-7
    • /
    • 2005
  • In order to determine the wear Properties of PECVD ceramic coatings, wear process was evaluated using the coated pin of Falex Tribosystem. Coating materials deposited wear the TiC, TiN and Ti(CN). An experimental process was established to determine the tribological characteristics of friction and wear behavior under the variation of applied load, temperature and sliding distance by the Falex test machine. The experimental results indicate that TiN coating compared with TiC coating on e materials have e excellent friction and wear characteristics. However TiC coating compared i친 TiN coatings have a low friction coefficient with steel and good thermal stability, and Ti(CN) has the excellent anti-wear properly as well as the superiority of extreme pressure property. Compound coating compared wi simple coatings show improved tribological characteristics.

Behavior of abrasive wear on counterpart roughness of glass fiber reinforcement polyurethane resin composites (상대재의 거칠기에 따른 GF/PUR 복합재료의 연삭마모거동)

  • Kim, Hyung-Jin;Koh, Sung-Wi;Kim, Jae-Dong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.3
    • /
    • pp.267-272
    • /
    • 2011
  • The behavior of abrasive wear on counterpart roughness of glass fiber reinforcement polyurethane resin (GF/PUR) composites were investigated at ambient temperature by pin-on-disc friction test. The friction coefficient, cumulative wear volume and surface roughness of these materials against SiC abrasive paper were determined experimentally. The major failure mechanisms were lapping layers, ploughing, delamination, deformation of resin and cracking by scanning electric microscopy (SEM) photograph of the tested surface. As increasing the counterpart roughness the GF/PUR composites indicated higher friction coefficient. The surface roughness of the GF/PUR composites was increased as the sliding velocity was higher and the counterpart roughness was rougher in wear test.

A Study on Friction and Wear of Manganese Phosphate Thin Film (인산망간 피막의 마찰 마모 특성에 관한 연구 ,)

  • 박영도;유상희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1384-1389
    • /
    • 2004
  • In these days, wear resistance is an essential condition because the relative movement between machine parts is being accelerated and those connected with the drive parts transmit power and force. Also wear resistance is closely related to reliability and life of products, therefore the study on friction and wear is very important in many fields. In this paper, wear test was conducted to know properties about friction and wear of manganese phosphate being used widely. Test type is 1 ball on disk and we compared manganese phosphate thin film with non-coated material. Through this study, we could know the effect of this surface treatment method, and then it is assumed that the reliability of parts will be secure.

  • PDF

Applicaion of Neural Network for Machine Condition Monitoring and Fault Diagnosis (기계구동계의 손상상태 모니터링을 위한 신경회로망의 적용)

  • 박흥식;서영백;조연상
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.74-80
    • /
    • 1998
  • The morphologies of the wear particles are directly indicative of wear process occuring in the machine. The analysis of wear particle morphology can therefore provide very early detection of a fault and can also ofen facilitate a dignosis. For this work, the neural network was applied to identify friction coefficient through four shape parameters (50% volumetric diameter, aspect, roundness and reflectivity) of wear debris generated from the machine. The averages of these parameters were used as inputs to the network. It is shown that collect identification of friction coefficient depends on the ranges of these shape parameters learned. The various kinds of the wear debris had a different pattern characteristics and recognized relation between the friction condition and materials very well by neural network. We discuss how the network determines difference in wear debris feature, and this approach can be applied for machine condition monitoring and fault diagnosis.