• Title/Summary/Keyword: Friction/Wear

Search Result 1,231, Processing Time 0.026 seconds

A Study on the Friction and Wear Characteristics of C-N Coated Spur Gear (C-N 코팅 스퍼기어의 마찰${\cdot}$마모 특성에 관한 연구)

  • Lu Long;Lyu Sung-ki
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.41-46
    • /
    • 2004
  • This study deals with the friction and wear characteristics of C-N coated spur gear. The PSII apparatus was built and a SCM415 test piece and test gear with steel substrate was treated with carbon nitrogen by this apparatus. The composition and structure of the surface layer were analyzed and compared with that of PVD coated TiN layer. It was found that both of friction coefficients of C-N coating and TiN coaling decreased with increasing load, however, C-N coating showed relatively lower friction coefficient than that of TiN coating. We was investigated the effect of C-N coating on hardness, friction and wear. The TiN coated gear showed more serious friction phenomena than that of C-N coated gear. It was considered that coating of TiN, which was conducted at a vacuum chamber at about $500^{\circ}C$ results in a tempering of base material that causes microstructure change, which in turn resulted in decreasing of hardness. The C-N coated gear and pinion had higher wear resistance that of TiN coated gear and pinion. C-N coating significantly improved the friction and wear resistance of the gear.

  • PDF

The Characteristics of Friction and Wear for Automotive Leaf Spring Materials (자동차용 Leaf 스프링 재질의 마찰 및 마멸 특성)

  • 오세두;안종찬;박순철;정원욱;배동호;이영제
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.321-328
    • /
    • 2003
  • In the present study, the residual stresses can have a significant on the life of structural engineering components. Residual stresses are created by the surface treatment such as shot peening or deep rolling. The objective of this experimental investigation is to study the influence of friction and wear characteristics due to residual stress under dry sliding condition. Friction and wear data were obtained with a specially designed tribometer. Test specimens were made of SUP9 (leaf spring material) after they were created residual stress by shot peening treatment. Residual stress profiles were measured at surface by means of the X­ray diffraction. Sliding tests were carried out different contact pressure and same sliding velocity 0.035 m/s (50 rpm). Leaf spring assembly test used to strain gauge sticked on leaf spring specimen in order to measure interleaf friction of leaf spring. Therefore, we were obtained hysteresis curve. As the residual stresses of surfaces increased, coefficient of friction and wear volume are decreased, but the residual stresses of surfaces are high, and consequently wear volume do not decreased. Coefficient of friction obtained from leaf spring assembly test is lower than that obtained from sliding test. From the results, structural engineering components reduce coefficient of friction and resistant wear in order to have residual stresses themselves.

Friction and Wear at Dry Sliding Low Carbon Steel Surfaces Under Vacuum Conditions (진공분위기 내에서 건조마찰 미끄럼운동을 하는 저탄소강 표면의 마찰마모 특성)

  • 공호성;윤의성;권오관
    • Tribology and Lubricants
    • /
    • v.10 no.3
    • /
    • pp.29-38
    • /
    • 1994
  • The friction and wear of mild steel at dry sliding surfaces under different vacuum conditions have been investigated to understand the wear mechanisms. For the test, a ball-ondisk typed wear-rig has been built and implemented, allowing control of sliding speed, load and vacuum. Results show that, at a high sliding velocity, friction of low carbon steel (SS41) under a high vacuum is much higher than that of ambient condition and wear is much severer. It is due to lack of effective oxidation film formation on which steel surfaces could protect themselves against the severe wear. It has been shown, however, that there is a critical regime with contact conditions (at a low sliding velocity, a low load, and under a medium vacuum) at which effective, protective films of low carbon steel have been built on the surfaces in a friction process with a self-regulating way, resulting in both very low coefficients of friction (about 0.3) and mild wear. In order to investigate the protective films on steel surfaces, the worn surfaces and the wear debris have been experimentally analyzed with SEM, AES/SAM and XRD. A theoretical analysis of frictional heating at sliding surfaces, and an experimental analysis of the influence of oxidation wear under various vacuum conditions are described. The important variables on which self-formations of protective films at dry sliding surfaces depend, and the wear mechanisms are also investigated.

Effects of Copper and Copper-Alloy on Friction and Wear Characteristics of Low-Steel Friction Material (로우스틸 마찰재의 마찰 및 마모특성에 미치는 구리계 재료의 영향)

  • Jung, Kwangki;Lee, Sang Woo;Kwon, Sungwook;Choi, Sungwoo;Lee, Heeok
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.207-214
    • /
    • 2020
  • In this study, we investigated the effects of copper and copper-alloy on the frictional and wear properties of low-steel friction material. The proportions of copper and copper-alloy in the brake friction materials used in passenger cars are very high (approximately 5-20% weight), and these materials have significant effects on friction and wear characteristics. In this study, the effects of cupric ingredients, such as the copper fiber and brass fiber, are investigated using the friction materials based on commercial formulations. After the copper and brass fibers from the same formulation were removed, the frictional and wear characteristics were evaluated to determine the influence of the copper and copper-alloy. We evaluated the frictional and wear characteristics by simulating various braking conditions using a 1/5 scale dynamometer. The results show that the friction material containing copper and brass fibers have excellent frictional stability and a low wear rate compared to the friction material that does not contain copper and brass fibers. These results are attributed to the excellent ductility, moderate melting point, high strength, and excellent thermal conductivity of copper and copper-alloy. We analyzed the surfaces of the friction materials before and after the performing the friction tests using a scanning electron microscope-energy dispersive X-ray spectroscope, confocal microscope, and roughness tester to verify the frictional behavior of copper and copper-alloy. In future studies, it will be applied to the development of copper-free friction materials based on the results of this study.

The Effects of Relative Material Properties on the Friction and Wear Behavior of Pure Metals (순수금속의 재료물성치와 마찰.마멸특성에 대한 연구)

  • 황동환;성인하;김대은
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.10-20
    • /
    • 1998
  • In this paper, the effects of material properties on the friction and wear behavior of pure metals are investigated. The sliding material pairs are selected based on their relative compatibility and relative hardness ratio of the specimen. The initial and steady-state friction coefficients are obtained in the experiments and the wear rates are quantitatively investigated. It is shown that the initial friction coefficient is affected by the hardness ratio of sliding materials. Furthermore, in steady state condition, neither hardness ratio nor compatibility has significant influence on the frictional behavior. As for wear, the ductility of the metal affects the wear particle generation process which in turn affects the frictional behavior. The findings of this research suggest that frictional interaction cannot be simply characterized by either compatibility or hardness ratio of the materials undergoing sliding contact.

Wear and Friction Characteristics with $MoS_2$ Adding in Automotive Gear Oil (자동차 기어오일의 $MoS_2$ 첨가에 따른 마찰마모 특성)

  • Oh, Seong-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.167-172
    • /
    • 2007
  • In the case of gear oil which is used under severe running condition in automotive, the various additives is used fur increasing the ability of enduring against seizure. In this paper, the wear and friction characteristics observed using the Falex friction and wear test machine in adding the $MoS_2$ to auto gear oil. As the result of experimentation, the friction and wear characteristics is the most excellent in adding concentration range of the $MoS_2\;2.5{\sim}5wt.%$.

  • PDF

Effects of Composition Ratio and Temperature on Friction and Wear of PTFE-Polyimide Composites (PTFE-폴리이미드 복합 재료의 마찰과 마모에 대한 성분비와 온도의 영향)

  • 심현해;권오관;이규한;김병환
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.55-62
    • /
    • 1996
  • Present study was undertaken to investigate the effects of composition ratio and temperature on the friction and wear of PTFE-polyimide composites under the atmosphere of nitrogen gas. The load range was 0.62-3.46 MPa, and the temperature range was room temperature and 200$^{\circ}$C. To mention some of the notable results, friction coefficient of PTFE 100% varied relatively little within the given load and temperature ranges. Polyimide 100% showed the lowest friction coefficient of 0.06 at 200$^{\circ}$C among all the experiments. PTFE 80%-polyimide 20% showed the lowest wear factors on the whole. Friction coefficient of PTFE 20%-polyimide 80% varied from the highest 0.35 to the lowest 0.09 among all the materials at room temperature, and showed almost the same lowest values with polyimide 100% at 200$^{\circ}$C. Suggestion of friction and wear mechanisms of the materials was tried to explain the observed phenomena including above mentioned results.

Tribological Characteristics of Carbon Fiber Reinforced Plastics by Surface modification (탄소섬유복합재의 표면개질에 따른 트라이볼로지 특성에 관한 연구)

  • 전승흥;양준호;오성모;이봉구
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.29-36
    • /
    • 2000
  • This investigation has been studied about friction and wear properties which were important problem, when carbon fiber reinforced plastic(CFRP) was used practically. Unidirection carbon fiber reinforced composites was fabricated with epoxy resin matrix and carbon fiber as a reinforced, and its surface was modified by the ion-assisted reaction. And then we tested the their friction and wear properties according to the ion-irradiation. when the amount of ion-irradiation was 1${\times}$10l6$\^$16/ ions/$\textrm{cm}^2$, the friction coefficient values were about 0.1, where as, the friction coefficient values of non-treatment composites were about 0.16. The former was the stablest in wear mode. We know that ion-irradiation was not proportioned to the friction coefficient, so we found the optimal conditions of the friction and wear according to the ion-irradiation.

  • PDF

마멸입자가 운동이력이 다른 금속재료의 마찰 마멸현상에 미치는 영향

  • 황동환;김대은;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.807-810
    • /
    • 1995
  • The effects of weae particles on the friiction and wear behavior of metals in dry sliding conditions are presented. The tribological test were performed using pure metal specimens which were selected based on their degrees of compatibility and hardness ratio. Friction and wear experiments were conducted using both pin-on-disk and reciprocating pin-on-plate type tribotesters to investigate the effect of motion history. Experimental results show that in the case of dry sliding the frictional behavior observed during pin-on-disk test differed form that of pin-on-reciprocator test for the given set of material pairs. The friction coefficient and wear rate were found to be higher for the pin-on-disk tests. It is suspected that the sliding motion of the pin affects the wear particle dynamics, which in turn influences the frictional behavior. The effect of material pair properties seemed to be relatively smaller than that of wear particles. The results of this paper is expected to aid in the design of mechanical systems for best tribological performance.

  • PDF

Fretting Wear and Friction of lnconel 690 for Steam Generator Tube in Elevated Temperature Water

  • Lee, Young-Ze;Lim, Min-Kyu;Oh, Se-Doo
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.49-53
    • /
    • 2002
  • Inconel 690 for nuclear steam generator tube has more chromium than the conventionally used Inconel 600 in order to increase the corrosion resistance. TD evaluate the tribological characteristics under fretting condition the fretting tests as well as sliding tests were carried out in elevated temperature water environment. Fretting tests of the cross-cylinder type were done under various vibrating amplitudes and applied normal loads in order to measure the friction forces and wear volumes. Also, the conventional sliding tests of pin-en-disk type were carried out to compare the test results. In fretting, the friction was very sensitive to the load and the amplitude. The friction coefficient decreased with increasing load and decreasing amplitude. Also, the wear of Inconel 690 can be predictable using the work rate model. Depending on normal loads and vibrating amplitudes, distinctively different wear mechanisms and of ten drastically different wear rates can occur. It was fecund that the fretting wear coefficients in water were increased as increasing the temperature of water.