• Title/Summary/Keyword: Friction/Wear

Search Result 1,231, Processing Time 0.028 seconds

A Study on Thermal and Mechanical Properties of Vapor Grown Carbon Nanofibers-Reinforced Epoxy Matrix Composites (기상성장 탄소나노섬유/에폭시 복합재료의 열적 및 기계적 특성에 관한 연구)

  • Park Soo-Jin;Lee Eun-Jung;Lee Jea-Rock
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.481-485
    • /
    • 2005
  • In this work, the thermal and mechanical properties of vapor grown carbon nanofibers (VGCNFs)-reinforced difunctional epoxy (EP) composites were investigated in the presence of the 0, 0.1, 0.5, 1.0, and $2wt\%$ VGCNFs. The thermal properties of the VGCNFs/EP composites were studied by thermo-mechanical analysis (TMA) and dynamic mechanical analysis (DMA). The mechanical properties of the VGCNFs/EP composites were also examined by universal testing machine (UTM), falling impact test, and the friction and wear tests. From experimental results, the thermal and mechanical properties of the VGCNFs/EP composites were improved with increasing the VGCNFs contents. This was due to the increase of crosslinking structure of the composites, resulting in improving the mechanical interlockings between VGCNFs and epoxy resins in the present composite system.

CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part I - Variation in Cross-Sectional Shape of Groove (그루브의 Trap 효과에 대한 CFD 해석: 제 1부 − 그루브 단면 형상의 변화)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.101-105
    • /
    • 2016
  • Trap effect of groove is evaluated in a lubricating system using computational fluid dynamics (CFD) analysis. The simulation is based on the standard k-ε turbulence model and the discrete phase model (DPM) using a commercial CFD code FLUENT. The simulation results are also capable of showing the particle trajectories in flow field. Computational domain is meshed using the GAMBIT pre-processor. The various grooves are applied in order to improve lubrication characteristics such as reduction of friction loss, increase in load carrying capacity, and trapping of the wear particles. Trap effect of groove is investigated with variations in cross-sectional shape and Reynolds number in this research. Various cross-sectional shapes of groove (rectangular, triangle, U shaped, trapezoid, elliptical shapes) are considered to evaluate the trap effect in simplified two-dimensional sliding bearing. The particles are assumed to steel, and defined a single particle injection condition in various positions. The “reflect” boundary condition for discrete phase is applied to the wall boundary, and the “escape” boundary condition to “pressure inlet” and “pressure outlet” conditions. The streamlines are compared with particles trajectories in the groove. From the results of numerical analysis in the study, it is found that the cross-sectional shapes favorable to the creation of vortex and small eddy current are effective in terms of particle trapping effect. Moreover, it is found that the Reynolds number has a strong influence on the pattern of vortex or small eddy current in the groove, and that the pattern of the vortex or small eddy current affects the trap effect of the groove.

Remanufacturing Process and Improvement in Fatigue Life of Spherical Roller Bearings (자동조심 롤러 베어링의 재제조 공정 및 피로수명 향상)

  • Darisuren, Shirmendagva;Amanov, Auezhan;Kim, Jun-Hyong;Lee, Seung-Chul;Choi, Gab-Su;Pyun, Young-Sik
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.350-355
    • /
    • 2014
  • This study proposes a sustainable bearing remanufacturing process using the ultrasonic nanocrystal surface modification (UNSM) technique. The UNSM technique is a newly developed and sophisticated surface modification technique that can increase the mechanical properties and improve the friction and wear performance of materials. Taking advantage of the bearing manufacturing process is the most significant way of optimizing the life of a bearing. The proper maintenance and usage of repaired bearings can increase their life to be equal to or greater than that of new bearings. This paper discusses the restoration of certain mechanical properties of worn, damaged, and discarded bearings, and suggests a remanufacturing process for used bearings, which can impart them with a lifespan equivalent to that of new bearings. The most damaged part of the discarded bearings is the raceway, which is the site of accumulated fatigue. The existing polishing or barrel finishing processes can recover the accumulated fatigue only partially. Rolling contact fatigue tests performed on UNSM-treated new and used specimens polished after $4{\times}10^6$ cycles reveal that UNSM-treated new specimens exhibit the longest fatigue life compared to other specimens. This study verifies the proposed complete fatigue recovery process, which can increase the fatigue life of used bearings to a level greater than that of new bearings.

Microstructure and Properties of Ni-SiC Composite Coating Layers Formed using Nano-sized SiC Particles (SiC 나노입자를 이용하여 형성한 Ni-SiC 복합도금막의 미세구조 및 특성)

  • Lee, Hong-Kee;Son, Seong-Ho;Lee, Ho-Young;Jeon, Jun-Mi
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.63-69
    • /
    • 2007
  • Ni-SiC composite coating layers were formed using two kinds of SiC nano-particles by DC electrodeposition in a nickel sulfamate bath containing SiC particles. The effect of stirring rate and SiC particle type on the microstructure and properties of Ni-SiC composite coating layers were investigated. Results revealed that the trend of deposition rate is closely related to the codeposition of SiC and the deposition rate. or nickel, and the codeposition behavior of SiC can be explained by using hydrodynamic effect due to stirring. The average roughness and friction coefficient are closely related to the codeposition of SiC and SiC particle size. It was found that the Victors microhardness of the composite coating layers increased with increasing codeposition of SiC. The composite coating layers containing smaller SiC particle showed higher hardness. This can be explained by using the strengthening mechanism resulting from dispersion hardening. Anti-wear property of the composite coating layers formed using 130 nm-sized SiC nano-particles has been improved by 2,300% compared with pure electroplated-nickel layer.

Chemical Mechanical Polishing: A Selective Review of R&D Trends in Abrasive Particle Behaviors and Wafer Materials (화학기계적 연마기술 연구개발 동향: 입자 거동과 기판소재를 중심으로)

  • Lee, Hyunseop;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.274-285
    • /
    • 2019
  • Chemical mechanical polishing (CMP), which is a material removal process involving chemical surface reactions and mechanical abrasive action, is an essential manufacturing process for obtaining high-quality semiconductor surfaces with ultrahigh precision features. Recent rapid growth in the industries of digital devices and semiconductors has accelerated the demands for processing of various substrate and film materials. In addition, to solve many issues and challenges related to high integration such as micro-defects, non-uniformity, and post-process cleaning, it has become increasingly necessary to approach and understand the processing mechanisms for various substrate materials and abrasive particle behaviors from a tribological point of view. Based on these backgrounds, we review recent CMP R&D trends in this study. We examine experimental and analytical studies with a focus on substrate materials and abrasive particles. For the reduction of micro-scratch generation, understanding the correlation between friction and the generation mechanism by abrasive particle behaviors is critical. Furthermore, the contact stiffness at the wafer-particle (slurry)-pad interface should be carefully considered. Regarding substrate materials, recent research trends and technologies have been introduced that focus on sapphire (${\alpha}$-alumina, $Al_2O_3$), silicon carbide (SiC), and gallium nitride (GaN), which are used for organic light emitting devices. High-speed processing technology that does not generate surface defects should be developed for low-cost production of various substrates. For this purpose, effective methods for reducing and removing surface residues and deformed layers should be explored through tribological approaches. Finally, we present future challenges and issues related to the CMP process from a tribological perspective.

Effect of the Pocket Depth on the Hammering Behavior of an Air Bearing Stage (포켓의 깊이가 공기 베어링 스테이지의 햄머링 현상에 미치는 영향)

  • Lee, Chun Moo;Kim, Gyu Ha;Park, Sang Joon;Hwang, Gyu-Jin;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.129-135
    • /
    • 2021
  • An air-bearing stage uses externally pressurized air as the lubricant between the stage and the rail. The supporting force generated by the supplied air makes the stage rise and move smoothly with extremely low friction. Mechanical contacts rarely happen, the bearing surfaces do not produce wear particles, and dust is not generated. It also has the advantage of having low energy loss and high precision. Because of its advantages, an air-bearing stage is used in several types of machines that require high precision. In this article, the effect of the pocket depth on the hammering phenomena of the air bearing is studied. An analysis program is developed to calculate the dynamic behavior of the stage by solving the Reynolds equation between the stage and the guideway and the equations of motion on the stage. The acceleration, constant movement, and deceleration are applied to the stage. The stage is modeled as a five-degree-of-freedom system. In the course of the dynamic behavior, the hammering phenomena occur under some special conditions. The deeper the pocket, the more unstable the behavior of the stage, and air hammering occurs when it exceeds a certain depth. In addition, the higher the supply pressure, the more unstable the behavior of the stage. However, hammering occurs even with a shallow pocket depth. Other conditions that affect the hammering phenomena are calculated and discussed.

Evaluation of Brinell Hardness of Coated Surface by Finite Element Analysis: Part 2 - Influence of Substrate and Coating Thickness (유한요소해석에 의한 코팅면의 브리넬 경도 평가: 제2보 - 모재와 코팅두께의 영향)

  • Park, TaeJo;Kang, JeongGuk
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.144-150
    • /
    • 2021
  • The most cost-effective method of reducing abrasive wear in mechanical parts is increasing their hardness with thin hard coatings. In practice, the composite hardness of the coated substrate is more important than that of the substrate or coating. After full unloading of the load applied to an indenter, its indentation hardness evaluated based on the dent created on the test piece was almost dependent on plastic deformation of the substrate. Following the first part of this study, which proposes a new Brinell hardness test method for a coated surface, the remainder of the study is focused on practical application of the method. Indentation analyses of a rigid sphere and elastic-perfect plastic materials were performed using finite element analysis software. The maximum principal stress and plastic strain distributions as well as the dent shapes according to the substrate yield stress and coating thickness were compared. The substrate yield stress had a significant effect on the dent size, which in turn determines the Brinell hardness. In particular, plastic deformation of the substrate produced dents regardless of the state of the coating layer. The hardness increase by coating behaved differently depending on the substrate yield stress, coating thickness, and indentation load. These results are expected to be useful when evaluating the composite hardness values of various coated friction surfaces.

Mechanical Stability of TiN and DLC Coated Instrument of Pedicle Screw System (TiN 및 DLC 코팅된 척추경나사못시스템 수술기구의 기계적 안정성 분석)

  • Kang, Kwan-Su;Jung, Tae-Gon;Yang, Jae-Woong;Woo, Su-Heon;Park, Tea-Hyun;Jeong, Yong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.163-170
    • /
    • 2019
  • Durability of instrument is one of the most important factor to ensure accurate treatment and decrease failure for the orthopedic surgical operation. Normally, a set-screw driver tip has been processed with hard coating for their higher durability and wear resistance. And several surface modification methods were obtained such as titanium nitride (TiN) coating, diamond like carbon coating, other nitriding, and etc. In this study, we have surface modified on set-screw driver tip with TiN and DLC, investigated whether the TiN and DLC coatings affect the mechanical properties and durability of the set-screw driver tip in the pedicle screw system. The surface morphologies were observed with scanning-electron microscopy (SEM), and the static/dynamic torsional properties were investigated with universal testing machine based on ASTM F543. Coating thickness of each coatings were commonly around $1^{\circ}C$. Static torsional stiffness, and ultimate torque values for DLC and TiN coated samples were significantly higher than those of non-coated sample by the pared T-test. Surface morphology of after the dynamic torsional test was more clean with less scratch or friction traces from DLC coating than that of TiN coating and non-coated sample.

The Effects of Geometrical Imperfections on the Dynamic Characteristics of a Tapered Roller Bearing Cage (테이퍼 롤러 베어링 케이지의 불완전성이 통특성에 미치는 영향)

  • Ahn, Tae-Kil;Park, Jang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.464-469
    • /
    • 2019
  • Tapered roller bearings are used widely in vans, trucks, and trains because they can support the vehicle in a stable manner even under a heavy load. The cage of a tapered roller bearing maintains the gap between the rollers, which prevents friction wear and suppresses heating. If the cage is severely deformed due to resonance, the roller may not be able to roll smoothly and even leave the cage. Consequently, it is very important to analyze the dynamic characteristics of the cage for reliable performance of a bearing. The cage essentially has geometrical tolerance in the manufacturing process. In this paper, the effects of those geometrical imperfections on the dynamic characteristics of the cage were investigated. As a result, natural frequency separation occurred near the natural frequency of the ideal cage due to geometrical imperfections. In addition, the interval was proportional to the magnitude of the geometric error, and the interval increased with increasing mode number.

Chemical Resistance and Field Trial of 3D-Printed Plastic Ball Bearing Used in Electric Motors for Chemical Processes (화학공정용 전동기에 사용된 3D 프린팅 플라스틱 볼베어링의 내화학성 평가 및 현장적용 연구)

  • Youngjun Kwon;Myounggyu Noh
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Fluid pumps in chemical processes are typically driven by electric motors. Even if the motor is separated from the pump with seals, wear resulting from friction and misalignment can lead to leakage of chemical fluid, causing corrosion in the bearing supporting the motor, and, eventually, failure of the motor. It is thus a standard procedure to replace bearings at regular intervals. In this article, we propose 3D-printed plastic ball bearings for use as an alternative to commercial stainless-steel ball bearings. The plastic bearings are easy to manufacture, require less time to replace, and are chemically resistant. To validate the applicability of the plastic bearings, we first conducted chemical resistance tests. Bearings were immersed in 30 caustic acid and 30 nitric acid for 30 min and 24 h, respectively. The test results showed no corrosive damage to the bearings. A test rig was set up to compare the performance of the plastic bearings with that of the commercially equivalent deep-groove ball bearings. Loading test results showed that the plastic bearings performed as well as the commercial bearing in terms of vibration level and load-handling capability. Finally, a plastic bearing was subjected to a clean-in-place process for three months. It actually outperformed the commercial bearing in terms of chemical resistance. Thus, 3D-printed plastic bearings are a viable alternative to stainless-steel ball bearings.