• Title/Summary/Keyword: Freundrich adsorption isotherm.

Search Result 2, Processing Time 0.016 seconds

Adsorptive Removal of 2-Methylisoborneol and Geosmin in Raw Water Using Activated Carbon and Zeolite (활성탄과 제올라이트를 이용한 상수원수 중 이취미물질(2-MIB, Geosmin)의 흡착제거)

  • Choi, Jeong-Hwan;Lee, Hong-Jae;Kim, Won-Ju;Park, Hyun-Geoun;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.244-251
    • /
    • 2001
  • This study was performed to investigate the recovery efficacy of 2-methylisobomeol (2-MIB) and Geosmin, odor contaminants produced by algae, by pretreatment techniques, and also to investigate both adsorption characteristics and removal efficiency to get some information for the effective removal of 2-MIB and Geosmin by batch experiments. In pretreatment experiments, the best recovery efficiency of both odorants at 0.2 and $2\;{\mu}g/L$ in raw water was 30 mL of sampling size, 9 g NaCl for salting out headspace of sampling phase and 40 minutes of adsorption. At the best condition, the recovery efficiency of 2-MIB was 85% at $0.2\;{\mu}g/L$ and 95% at $2\;{\mu}g/L$, whereas the efficiency of Geosmin was lower than that of 2-MIB : 61% at $0.2\;{\mu}g/L$ and 81% at $2\;{\mu}g/L$. In batch experiments, the removal efficiency of the Geosmin and 2-MIB by adsorbents using distilled water were increased in comparison with raw water, the efficiency in raw water was little different by their concentrations. When these results were applied to the Freundrich adsorption isotherm, the K value of 2-MIB for zeolite, coal activated carbon, and coconut activated carbon was 0.671, 1.811, and 1.340, respectively, and the value of Geosmin was 0.6125, 1.771, and 1.5191, respectively. Thus the adsorption efficiency of 2-MIB and Geosmin was in the order of zeolite, coconut activated carbon, coal activated carbon.

  • PDF

Evaluation of Adsorption Characteristics of the Media for Biofilter Design (바이오필터설계를 위한 바이오필터 담체의 흡착 특성)

  • Lee, Eun-Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.994-1001
    • /
    • 2008
  • Freundlich isothermal adsorption parameters, applicable to such biofilter-model as process-lumping model(Lim's model), for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost were obtained and were compared each other, assuming that adsorbents are enclosed by water layer, in order to construct robust process-lumping biofilter model effective for wide-range of hydrophilic volatile organic compounds(VOC). In this investigation 0.04, 0.08, 0.12, 0.16, 0.2, 0.4, 0.8 and 1.0ml of ethanol were added to three kinds of adsorbent-media and were placed at $30^{\circ}{\cdots}$ under the wet condition of the media, which was the same as biofilter operating condition, until the adsorption reached the condition of equilibrium before each adsorbed amount of ethanol was obtained. Then adsorption capacity parameters(K) and adsorption exponents of Freundlich adsorption isotherm equation, which simulates the adsorbed amount of ethanol equilibrated with the ethanol concentration of the condensed water in the pore of the media, were constructed for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost as (0.7566 and $5.070{\times}10^{-7}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.7566}$), (0.8827 and $1.000{\times}10^{-8}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.8827}$) and (0.5688 and $5.243{\times}10^{-6}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.5688}$), respectively. These Freundlich isothermal adsorption parameters were applicable to the adsorption characteristics of biofilter media enclosed with bio-layer. The order of magnitude of the ratio of ethanol-air/water partition coefficient and toluene-air/water partition coefficient was almost consistent to that of ethanol-adsorbed amounts in this experiment with compost and in the investigation of Delhomenie et al. on toluene-adsorption to wet compost.