• Title/Summary/Keyword: Freundlich adsorption isotherm

Search Result 378, Processing Time 0.027 seconds

Photocatalysis and Adsorption of Reactive Black 5(RB5) by HAP/TiO2 Media (HAP/TiO2 여재를 이용한 Reactive Black 5(RB5)의 광촉매 반응과 흡착)

  • Chun, Sukyoung;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.31-37
    • /
    • 2011
  • This study investigated on the adsorption and photocatalysis of Reactive Black 5(RB5) by the hydroxyapatite(HAP)/Titanium dioxide($TiO_{2}$) media. The adsorption of RB5 on $TiO_{2}$, HAP and $TiO_{2}$/HAP was investigated during a series of batch adsorption experiments. The amounts adsorbed at equilibrium were measured. Langmuir and Freundlich isotherm models were tested for their applicability. The result of equilibrium studies of $TiO_{2}$, HAP and $TiO_{2}$/HAP adsorbent were found to follow Langmuir isotherm model. The adsorbed amounts(Qmax) were found to be 5.28mg/g on single $TiO_{2}$, 12.45mg/g on single HAP and 9.03mg/g on $TiO_{2}$/HAP, respectively. The experimental data were analysed using the pseudo-first-order adsorption and photocatalysis kinetic models. According to these models, RB5 degradation by $TiO_{2}$/HAP was affected by interaction effect of photocatalysis and adsorption.

Enhancement of phosphate removal using copper impregnated activated carbon(GAC-Cu) (Cu(II)를 이용하여 표면개질된 활성탄의 인산염 제거효율 향상)

  • Shin, Jeongwoo;Kang, Seoyeon;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.455-463
    • /
    • 2021
  • The adsorption process using GAC is one of the most secured methods to remove of phosphate from solution. This study was conducted by impregnating Cu(II) to GAC(GAC-Cu) to enhance phosphate adsorption for GAC. In the preparation of GAC-Cu, increasing the concentration of Cu(II) increased the phosphate uptake, confirming the effect of Cu(II) on phosphate uptake. A pH experiment was conducted at pH 4-8 to investigate the effect of the solution pH. Decrease of phosphate removal efficiency was found with increase of pH for both adsorbents, but the reduction rate of GAC-Cu slowed, indicating electrostatic interaction and coordinating bonding were simultaneously involved in phosphate removal. The adsorption was analyzed by Langmuir and Freundlich isotherm to determine the maximum phosphate uptake(qm) and adsorption mechanism. According to correlation of determination(R2), Freundlich isotherm model showed a better fit than Langmuir isotherm model. Based on the negative values of qm, Langmuir adsorption constant(b), and the value of 1/n, phosphate adsorption was shown to be unfavorable and favorable for GAC and GAC-Cu, respectively. The attempt of the linearization of each isotherm obtained very poor R2. Batch kinetic tests verified that ~30% and ~90 phosphate adsorptions were completed within 1h and 24 h, respectively. Pseudo second order(PSO) model showed more suitable than pseudo first order(PFO) because of higher R2. Regardless of type of kinetic model, GAC-Cu obtained higher constant of reaction(K) than GAC.

Comparative adsorption of crude oil using mango (Mangnifera indica) shell and mango shell activated carbon

  • Olufemi, Babatope Abimbola;Otolorin, Funmilayo
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.384-392
    • /
    • 2017
  • Mango shell (MS) and mango shell activated carbon (MSAC) was used to adsorb crude oil from water at various experimental conditions. The MSAC was prepared by carbonization at $450^{\circ}C$ and chemical activation using strong $H_3PO_4$ acid. The adsorbents were characterized with Fourier Transform Infrared spectroscopy. Investigations carried out included the effects of parametric variations of different adsorbate dose, adsorbent dose, time, temperature, pH and mixing speed on the adsorption of crude oil. The equilibrium isotherm for the adsorption process was determined using Langmuir, Freundlich, Temkin and Dubinin Radushkevich isotherm models. Temkin isotherm was found to fit the equilibrium data reasonably well than others. The result demonstrated that MSAC was more effective for crude oil adsorption than raw mango shell. Optimum conditions were also presented. The enhanced effect from activation was justified statistically using Analysis of Variance and Bonferroni-Holm Posthoc significance test. The pseudo first order kinetics gave a better fit for crude oil adsorption with both MS and MSAC.

Study on Adsorption Characteristics of Tharonil from Aqueous Solution by Activated Carbon Adsorption (활성탄에 의한 Tharonil의 흡착특성에 관한 연구)

  • 이종집;유용호
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.88-94
    • /
    • 2000
  • The adsorption characteristics of Tharonil on granular activated carbon were experimentally investigated in an adsorber and in a packed column. It was estabilished that the adsorption equilibrium of Tharonil on granular activated carbon was more successfully fitted by Freundlich isotherm equation than Langmuir isotherm equation in the concentration range from 1 to 1000 mg/1. Intraparticle diffusivities (pore and surface diffusivity) of Tharonil were estimated by the concentration-time curve and adsorption isotherm. The estimated values of pore diffusivity and surface diffusivity are $6.70{\times}10^{-6}$ and $2.0{\times}10^{-9}cm^2/s$, respectively. From comparison of intraparticle diffusivities, it was found that surface diffusion was the limiting step for adsorption rate. The break time and breakthrough curve predicted by constant pattern-linear driving force model were shown to agree with the experimental results.

  • PDF

Removal of Cu (II) from aqueous solutions using magnetite: A kinetic, equilibrium study

  • Kalpakli, Yasemen
    • Advances in environmental research
    • /
    • v.4 no.2
    • /
    • pp.119-133
    • /
    • 2015
  • Water pollution means that the physical, chemical and biological properties of water are changing. In this study, adsorption was chosen as the treatment method because it is an eco-friendly and low cost approach. Magnetite is a magnetic material that can synthesize chemical precipitation. Magnetite was used for the removal of copper in artificial water samples. For this purpose, metal removal from water dependent on the pH, initial concentration of metal, amount of adsorbent and effect of sorption time were investigated. Magnetite was characterized using XRD, SEM and particle size distribution. The copper ions were determined by atomic absorption spectrometry. The adsorption of copper on the magnetite was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 10 to $50mg\;l^{-1}$. Optimum conditions for using magnetite were found to be concentration of $10mg\;L^{-1}$, pH: 4.5, contact time: 40 min. Optimum adsorbent was found to be 0.3 gr. Furthermore, adsorption isotherm data were analyzed using the Langmuir and Freundlich equations. The adsorption data fitted well with the Freundlich ($r^2=0.9701$) and Langmuir isotherm ($r^2=0.9711$) equations. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were described well by a pseudo-second-order kinetic model.

Characteristics of Phosphate Adsorption using Prepared Magnetic Iron Oxide (MIO) by Co-precipitation Method in Water (공침법에 의해 제조된 Magnetic Iron Oxide (MIO)를 이용한 수중 인 흡착 특성)

  • Lee, Won-Hee;Chung, Jinwook;Kim, Jong-Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.6
    • /
    • pp.609-615
    • /
    • 2015
  • This study was carried out for characterization of MIO synthesized in our laboratory by co-precipitation method and applied isotherm and kinetic models for adsorption properties. XRD analysis were conducted to find crystal structure of synthesized MIO. Further SEM and XPS analysis was performed before and after phosphate adsorption, and BET analysis for surface characterization. Phosphate stock solution was prepared by KH2PO4 for characterization of phosphate adsorption, and batch experiment was conducted using 50 ml conical tube. Langmuir and Freundlich models were applied based on adsorption equilibrium test of MIO by initial phosphate solution. Pseudo first order and pseudo second order models were applied for interpretation of kinetic model by temperature. Surface area and pore size of MIO were found $89.6m^2/g$ and 16 nm respectively. And, the determination coefficient ($R^2$) value of Langmuir model was 0.9779, which was comparatively higher than that of Freundlich isotherm model 0.9340.

Study on Isotherm, Kinetic and Thermodynamic Parameters for Adsorption of Methyl Green Using Activated Carbon (활성탄을 이용한 메틸 그린 흡착에 있어서 등온선, 동력학 및 열역학 파라미터에 대한 연구)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.190-197
    • /
    • 2019
  • The adsorption of methyl green dye using an activated carbon from an aqueous solution was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The Langmuir isotherm model showed a good fit to the equilibrium adsorption data. Based on the estimated Langmuir separation factor, ($R_L=0.02{\sim}0.106$), this process could be employed as the effective treatment (0 < $R_L$ < 1). It was found that the adsorption was a physical process with the adsorption energy (E) value range between 316.869 and 340.049 J/mol obtained using Dubinin-Radushkevich equation. The isothermal saturation capacity obtained from brunauer emmett teller (BET) model increased with increasing the temperature. The kinetics of adsorption followed a pseudo second order model. The free energy and enthalphy values of -5.421~-7.889 and 31.915 kJ/mol, respectively indicated that the adsorption process follows spontaneous endothermic reaction. The isosteric heat of adsorption increased with the increase of equilibrium adsorption amounts, and the total interaction of the adsorbent - adsorbate increased as the surface coverage increased.

Phosphorus Adsorption Characteristic of Ferronickel and Rapid Cooling Slags (페로니켈슬래그와 제강급랭슬래그의 인 흡착특성)

  • Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Seong-Heon;Park, Min-Gyu;Kang, Byung-Hwa;Lee, Sang-Won;Lee, Seong-Tae;Choi, Ik-Won;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.3
    • /
    • pp.169-177
    • /
    • 2014
  • BACKGROUND: The ferronickel and rapid cooling slags used in present study are industrial wastes derived from a steel factory in Korea. These slags are used as almost road construction materials after magnetic separation. However, the use of slag to remove phosphorus from wastewater is still a relatively less explored. The objective of this work was to evaluate the feasibility of ferronickel slag (FNS) and rapid cooling slag (RCS) as sorbents for phosphorus removal in wastewater. METHODS AND RESULTS: Adsorption experiments were conducted to determine the adsorption characteristics of the FNS and RCS for the phosphorus. Adsorption behaviour of the phosphorus by the FNS and RCS was evaluated using both the Freundlich and Langmuir adsorption isotherm equations. FNS and RCS were divided into two sizes as effective sizes. Effective sizes of FNS and RCS were 0.5 and 2.5 mm, respectively. The adsorption capacities (K) of the phosphorus by the FNS and RCS were in the order of RCS 0.5 (0.5105) > RCS 2.5 (0.3572) ${\gg}$ FNS 2.5 (0.0545) ${\fallingdotseq}$ FNS 0.5 (0.0400) based on Freundlich adsorption isotherm. The maximum adsorption capacities (a; mg/kg) of the phosphorus determined by the Langmuir isotherms were in the order of RCS 0.5 (3,582 mg/kg) > RCS 2.5 (2,983 mg/kg) > FNS 0.5 (320 mg/kg) ${\fallingdotseq}$ FNS 2.5 (187 mg/kg). RCS 0.5 represented the best sorbent for the adsorption of phosphorus. In the experiment, the Langmuir model showed better fit with our data than the Freundlich model. CONCLUSION: This study indicate that the use of RCS in constructed wetlands or filter beds is a promising solution for phosphorus removal via adsorption and precipitation mechanisms.

A Study on the Fixed-bed Adsorption of Heavy Metal Ions over Chitosan Bead (키토산 비드에 의한 중금속 이온의 고정층 흡착에 관한 연구)

  • Chung, Kyong-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.166-172
    • /
    • 1999
  • Fixed-bed adsorption of metal ions on chitosan bead was studied to remove heavy metal ions in waste water. Chitin was extracted from carb shell and chitosan was prepared by deacetylation of the chitin. The chitosan in bead was used as an adsorbent for heavy metal ions. Freundlich and Langmuir isotherm was determined from the experimental results of equilibrium adsorption for individual metal ion ($Cu^{2+}$, $Co^{2+}$, $Ni^{2+}$) on chitosan bead. Adsorption strength of metal ions decreased in the order of $Cu^{2+}$>$Co^{2+}$>$Ni^{2+}$ ion. Breakthrough curves of single and multicomponent adsorption for metal ions were obtained from the experimental results of fixed-bed adsorption. The breakthrough curves were analyzed by simulation with fixed-bed adsorption equation based on LDFA (linear driving force approximation) adopted LAS (ideal adsorbed solution) theory which can predict multi-component adsorption isotherm from individual adsorption isotherm. The behavior of fixed bed adsorption for single and multi-component system could be nicely simulated by the equation.

  • PDF

Characteristics of Isotherm, Kinetic, and Thermodynamic Parameters for Reactive Blue 4 Dye Adsorption by Activated Carbon (활성탄에 의한 Reactive Blue 4 염료의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.122-130
    • /
    • 2020
  • The isotherm, kinetic, and thermodynamic parameters of reactive blue 4 adsorbed by activated carbon were investigated for activated carbon dose, pH, initial concentration, contact time, and temperature data. The adsorption of the RB 4 dye by activated carbon showed a concave shape in which the percentage of adsorption increased in both directions starting from pH 7. The isothermal adsorption data were applied to Langmuir, Freundlich, and Temkin isotherms. Both Freundlich and Langmuir isothermal adsorption models fit well. From determined Freundlich separation factor (1/n = 0.125 ~ 0.232) and Langmuir separation factor (RL = 1.53 ~ 1.59), adsorption of RB 4 by activated carbon could be employed as an effective treatment method. The constant related to the adsorption heat (BT = 2.147 ~ 2.562 J mol-1) of Temkin showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo second order model with good agreement. The results of the intraparticle diffusion model showed that the inclination of the first straight line representing the surface diffusion was smaller than that of the second straight line representing the intraparticle pore diffusion. Therefore, it was confirmed that intraparticle pore diffusion is the rate-controlling step. The negative Gibbs free energy change (ΔG = -3.262 ~ -7.581 kJ mol-1) and the positive enthalpy change (ΔH = 61.08 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, proving this process to be spontaneous and endothermic.