• Title/Summary/Keyword: FresnelScattering

Search Result 9, Processing Time 0.027 seconds

Scattering characteristic analysis of Fresnel zone plate lens using TLM (TLM법을 이용한 프레넬 존 플레이트 렌즈 산란특성 해석)

  • 김태용
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.06a
    • /
    • pp.15-18
    • /
    • 2003
  • Most numerical techniques such as FEM, BEM, and MOM are able to analize electromagnetic scattering problems from arbitrary shapes. Although these methods could be applied to compute electromagnetic scattering problems in frequency domain, it was limited for electrodynamic problem in time domain. In this paper, electromagnetic scattering problem from Fresnel zone plate lens are considered. Some numerical results computed by TLM are compared with Kirchhoff's approximation and PO method.

  • PDF

Electromagnetic Wave Propagation Characteristics from Large Scale Random Rough Surfaces (큰 규모의 불규칙 조면에 의한 전자파 전파 특성)

  • Yoon Kwang-Yeol;Chai Yong-Yoong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.4 s.107
    • /
    • pp.393-399
    • /
    • 2006
  • In this paper we applied a ray tracing method to estimate the scattering characteristics from large scale random rough surfaces. For the electromagnetic field evaluation, we have used the diffracted coefficient of the knife edge diffraction for the diffracted rays and Fresnel's reflection coefficients in connection with reflected rays. In addition, we examine to search for the traced rays using the imaging method which can be obtained all rays to arrived at receivers accurately and the diffracted field from rough surfaces is considered. Numerical examples have been carried out for the scattering characteristics of an ocean wave-like rough surface and delay spread characteristics of a building-like surface. In the present work we have demonstrated that the ray tracing method is effective to numerical analysis of a rough surface scattering.

Analysis of Soret-type Fresnel Lens using 2D FDTD Method (2차원 FDTD법을 이용한 Soret 타입 프레넬 렌즈 해석)

  • Kim, Tae-Yong;Lee, Hoon-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.67-69
    • /
    • 2012
  • In this paper, electromagnetic scattering analysis of Fresnel Lens by using 2D FDTD method was performed. Fresnel lens which is consigured 7 diffracted conductors, and considered at 5GHz. As a result, axial gain characteristic corresponding to near design focusing distance at 0.71m is 26dB.

  • PDF

Real scale lunar apparent albedo and moonshine simulation with improved 3D lunar optical model with Apollo 10084 soil sample

  • Yu, Jinhee;Kim, Sug-Whan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.210.2-210.2
    • /
    • 2012
  • Using Fresnel reflection and Hapke BRDF model with Apollo 10084 soil sample's scattering properties, we constructed a real scale optical lunar model and used it to simulate lunar apparent albedo and moonshine. For Fresnel reflection, the refractive index of $1.68{\pm}0.5$ was used. For Hapke BRDF parameters from BUGs BRDF measurement, the single scattering with w=0.33, hot spot width h=0.017, average phase angle ${\zeta}$=-0.086 and Legendre polynomial coefficients b=0.308, c=0.425 in wavelength 700nm with two types of Henyey-Greenstein phase function was applied. The computation model includes the Sun as a Lambertian scattering sphere, emitting 1.5078 W/m2 at 700nm in wavelength. The Sun and Moon models were then imported into the IRT based radiative transfer computation. The trial simulation of the irradiance levels of moonshine lights shows that they agree well with the ROLO measurement data. We then estimate the lunar apparent albedo to 0.11. The results are to be compared with the measurement data.

  • PDF

On the application of angular spectrum for synthesizing a 3-D image from a series of 2-D images (다수의 2차원 단층영상으로부터 3차원 영상을 합성하기 위한 Angular 스펙트럼의 적용)

  • 양훈기;이상이;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.7
    • /
    • pp.1668-1676
    • /
    • 1996
  • This paper presents the evaluation of an angular spectrum-based method used to calculate scattering pattern of a three-dimensional object modelled as a collection composed of vertical sectional two-dimensional images. This is done via comparing a proposed method with two existing methods, i.e., a Fresnel hologram method and a ray-tracing method, in terms of computatioal complexities and reconstructed results. Maathematical derivations for each methods are reviewed and implementing procedures are described in detail, along with the amount of computaions required from the implementation point of view, rather than from the mathematical point of view. We show simulation results in which the Fresnel holoram method dose not exhibit promising results although it requires the least computation. Moreover, it is also shown that the proposed method, even with much less computational requirement than the ray-tracing method, produces good performances asmuch as the ray-tracing method does.

  • PDF

Comparing BRDF Models: Representation of Measured BRDF (BRDF 모델비교: 측정 BRDF의 표현을 중심으로)

  • Lee, Joo-Haeng;Kim, Sung-Soo;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.5
    • /
    • pp.346-354
    • /
    • 2009
  • BRDF (bidirectional reflectance distribution function) is critical in realistic simulation of material appearances since it models the directional characteristics of reflection of light. Although many BRDF models have been proposed so far, it is still not easy to find one specific model that could represent all the reflection properties of real materials such as generalized diffusion, off-specular reflection, Fresnel effect, and back scattering. In this paper, we compare three BRDF models including B-spline volume BRDF (BVB), Cook-Torrance, and Lafortune in their ability to represent the measured BRDF data for physically-based rendering. We show that B-spline volume BRDF surpass the others in quality of data fitting and rendering, especially for materials without specular reflections.

Application of Polystyrene/SiO2 Core-shell Nanospheres to Improve the Light Extraction of GaN LEDs

  • Yeon, Seung Hwan;Kim, Kiyong;Park, Jinsub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.314.2-314.2
    • /
    • 2014
  • To improve the optical and electrical properties of commercialized GaN-based light-emitting diodes (LEDs), many methods are suggested. In recent years, great efforts have been made to improve the internal quantum efficiency and light extraction efficiency (LEE) and promising approaches are suggested using a patterned sapphire substrate (PSS), V-pit embedded LED structures, and silica nanostructures. In this study, we report on the enhancement of photoluminescence (PL) intensity in GaN-based LED structures by using the combination of SiO2 (silica) nanospheres and polystyrene/SiO2 core-shell nanospheres. The SiO2 nanospheres-coated LED structure shows the slightly increased PL intensity. Moreover the polystyrene/SiO2 core-shell nanospheres-coated structure shows the more increase of PL intensity comparing to that of only SiO2 spheres-coated structure and the conventional structure without coating of nanospheres. The Finite-difference time-domain (FDTD) simulation results show corresponding result with experimentally observed results. The mechanism of enhancement of PL intensity using the coating of polystyrene/SiO2 core-shell nanospheres on LED surface can be explained by the improvement in extraction efficiency by both increasing the probability of light escape by reducing Fresnel reflection and by multiple scattering within the core-shell nanospheres.

  • PDF

High-k ZrO2 Enhanced Localized Surface Plasmon Resonance for Application to Thin Film Silicon Solar Cells

  • Li, Hua-Min;Zang, Gang;Yang, Cheng;Lim, Yeong-Dae;Shen, Tian-Zi;Yoo, Won-Jong;Park, Young-Jun;Lim, Jong-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.276-276
    • /
    • 2010
  • Localized surface plasmon resonance (LSPR) has been explored recently as a promising approach to increase energy conversion efficiency in photovoltaic devices, particularly for thin film hydrogenated amorphous silicon (a-Si:H) solar cells. The LSPR is frequently excited via an electromagnetic (EM) radiation in proximate metallic nanostructures and its primary con sequences are selective photon extinction and local EM enhancement which gives rise to improved photogeneration of electron-hole (e-h) pairs, and consequently increases photocurrent. In this work, high-dielectric-constant (k) $ZrO_2$ (refractive index n=2.22, dielectric constant $\varepsilon=4.93$ at the wavelength of 550 nm) is proposed as spacing layer to enhance the LSPR for application to the thin film silicon solar cells. Compared to excitation of the LSPR using $SiO_2$ (n=1.46, $\varepsilon=2.13$ at the wavelength of 546.1 nm) spacing layer with Au nanoparticles of the radius of 45nm, that using $ZrO_2$ dielectric shows the advantages of(i) ~2.5 times greater polarizability, (ii) ~3.5 times larger scattering cross-section and ~1.5 times larger absorption cross-section, (iii) 4.5% higher transmission coefficient of the same thickness and (iv) 7.8% greater transmitted electric filed intensity at the same depth. All those results are calculated by Mie theory and Fresnel equations, and simulated by finite-difference time-domain (FDTD) calculations with proper boundary conditions. Red-shifting of the LSPR wavelength using high-k $ZrO_2$ dielectric is also observed according to location of the peak and this is consistent with the other's report. Finally, our experimental results show that variation of short-circuit current density ($J_{sc}$) of the LSPR enhanced a-Si:H solar cell by using the $ZrO_2$ spacing layer is 45.4% higher than that using the $SiO_2$ spacing layer, supporting our calculation and theory.

  • PDF