• Title/Summary/Keyword: Freshwater Adaptation

Search Result 23, Processing Time 0.018 seconds

Analysis of a Heterocyst-controlling Gene and Its Expression upon Nitrogen Starvation in a Cyanobacterium (남조류의 이형세포 조절 유전자와 질소량에 따른 유전자 발현의 분석)

  • Bae, Jeong-Jin;Yoon, Ho-Sung
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.4 s.114
    • /
    • pp.510-517
    • /
    • 2005
  • The filamentous cyanobacterium Anabaena is capable of both photosynthesis and nitrogen fixation which probably facilitated its incredible adaptation and proliferation in freshwater environments. A small gene, patS, was found to block nitrogen fixing cells from developing which resulted in death of Anabaena in the absence of combined nitrogen sources. We analyzed the DNA sequences in the vicinity of the patS gene by using a codon usage program and detected no codon bias other than the patS open reading frame. Three overlapping cosmids that contain the patS gene were identified, and the presence of other known heterocyst-controlling genes was examined. The patS expression in response to nitrogen starvation was analyzed at the level of transcription and translation by using Northern blot analyses and lacZ-reporter-gene fusion experiments, respectively. The patS expression increased rapidly (within 12 hours) upon the removal of combined nitrogen from the media.

Light and Electron Microscopy of Gill and Kidney on Adaptation of Tilapia(Oreochromis niloticus) in the Various Salinities (틸라피아의 해수순치시(海水馴致時) 아가미와 신장(腎臟)의 광학(光學) 및 전자현미경적(電子顯微鏡的) 관찰(觀察))

  • Yoon, Jong-Man;Cho, Kang-Yong;Park, Hong-Yang
    • Applied Microscopy
    • /
    • v.23 no.2
    • /
    • pp.27-40
    • /
    • 1993
  • This study was taken to examine the light microscopic and ultrastructural changes of gill and kidney of female tilapia{Oreochromis niloticus) adapted in 0%o, 10%o, 20%o, and 30%o salt concentrations, respectively, by light, scanning and transmission electron microscope. The results obtained in these experiments were summarized as follows: Gill chloride cell hyperplasia, gill lamellar epithelial separation, kidney glomerular shrinkage, blood congestion in kidneys and deposition of hyalin droplets in kidney glomeruli, tubules were the histological alterations in Oreochromis niloticus. Incidence and severity of gill chloride cell hyperplasia rapidly increased together with increase of salinity, and the number of chloride cells in gill lamellae rapidly increased in response to high external NaCl concentrations. The ultrastructure by scanning electron microscope(SEM) indicated that the gill secondary lamella of tilapia(Oreochromis niloticus) exposed to seawater, were characterized by rough convoluted surfaces during the adaptation. Transmission electron microscopy(TEM) indicated that mitochondria in chloride cells exposed to seawater, were both large and elongate and contained well-developed cristae. TEM also showed the increased chloride cells exposed to seawater. The presence of two mitochondria-rich cell types is discussed with regard to their possible role in the hypoosmoregulatory changes which occur during seawater-adaptation. Most Oreochromis niloticus adapted in seawater had an occasional glomerulus completely filling Bowman's capsule in kidney, and glomerular shrinkage was occurred higher in kidney tissues of individuals living in 10%o, 20%o, 30%o of seawater than in those living in 0%o of freshwater, and blood congestion was occurred severer in kidney tissues of individuals living 20%o, 30%o of seawater than in those living in 10%o of seawater. There were decreases in the glomerular area and the nuclear area in the main segments of the nephron, and that the nuclear areas of the nephron cells in seawater-adapted tilapia were of smaller size than those from freshwater-adapted fish. Our findings demonstrated that Oreochromis niloticus tolerated moderately saline environment and the increased body weight living in 30%o was relatively higher than that living in 10%o in spite of histopathological changes.

  • PDF

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments (오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가)

  • Dong Hyun Kim;Hyung Jun Park;Young Jun Bang;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.45-59
    • /
    • 2023
  • The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.