• Title/Summary/Keyword: Fresh Ginseng

Search Result 384, Processing Time 0.034 seconds

Effect of Green Manure Incorporation and Solarization on Root Rot Disease of 3-year-old Ginseng in Soil of Continuous Cropping Ginseng (녹비작물 토양환원과 태양열 소독에 의한 3년생 인삼의 뿌리썩음병 억제효과)

  • Seo, Mun Won;Lee, Sung Woo;Lee, Seung Ho;Jang, In Bok;Heo, Hye Ji
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.4
    • /
    • pp.284-291
    • /
    • 2019
  • Background: Ginseng root rot disease, caused by Cylindrocarpon destructans and Fusarium solani is a major cause of replant failure in continuous cropping ginseng. Methods and Results: To control replant injury in soil infected with C. destructans and F. solani, biosolarization was performed by covering the plot with transparent polyethylene film after adding green manure of maize and sunflower for the summer season. Per 10 a, fresh and dry weight of maize was 10.1 and 2.5 tons, respectively, and that of sunflower was 8.1 tons and 1.2 tons, respectively. Mean maximum temperature at 20 cm depth was $33.2^{\circ}C$, $41.5^{\circ}C$ and $41.8^{\circ}C$ in the control, maize-incorporated and sunflower-incorporated plots, respectively. The elapsed time over $40^{\circ}C$ was 36.4 h in the maize-incorporated plot and 77.3 h in the sunflower-incorporated plot. Biosolarization increased $NO_3$ content in soil, while content of organic matter, Ca, and Mg was decreased. Electrical conductivity, $NO_3$ and $P_2O_5$ in soil significantly increased after two years of biosolarization. The number of spores of C. destructans in soil was significantly decreased by biosolarization, and sunflower treatment was more effective than maize treatment in decreasing the number of spores. Root yield of 3-year-old ginseng was significantly increased by biosolarization, however, there was no significant difference between maize and sunflower treatments. Rate of root rot in 3-year-old ginseng decreased to 16.5% with the incorporation maize and 5.0% with the incorporation of sunflower, while that in control 25.6%. Conclusions: Biosolarization was effective in inhibiting ginseng root rot by decreasing the density of root rot disease and improving soil chemical properties.

Effect of Korean Effective Microorganisms and Seafood Amino Acid Fertilizer on the Root Quality of Panax ginseng (해양부산물 아미노산액비 및 유용미생물시용이 인삼의 품질에 미치는 영향)

  • Ann, Seoung-Won
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.1023-1030
    • /
    • 2012
  • Contents of ginsenosides 7 subordinations of two-year ginseng (fresh ginseng) is 1.27% and three-year ginseng is 2.09%, so the three-year ginseng root increased 64.9% compared to the two-year root. Compared with the comparison group, ginsenosides component content of KEM+SAF-applied group increased 24% in case of the two-year root and 20% in case of the three-year root. In vitamin C content, two-year root showed 59.4% higher and three-year root showed 37.7% higher in KEM+SAF applied group compared with the comparison group. In case of vitamin E, the two-year root indicated 5.6% higher and three-year root indicated 1.5% higher in KEM+SAF applied group compared with the comparison group, but there is no significant difference. In phytosterol three components (campesterol, stigmasterol, sitosterol), two-year root showed 25.3, 3.6, 14.1% higher for each, and three-year root showed 23.6, 6.8, 12.9% higher in KEM+SAF applied group and 14.4% was higher on average. In DPPH, two-year root indicated 34.4% higher and three-year root indicated 42.4% higher in KEM+SAF applied group compared to the comparison group. To sum up the results, KEM+SAF applied group showed (1)22% ginsenosides components content, (2)48.6% vitamin C content, (3)3.6% vitamin E content, (4)14.4% phytosterol content, (5)38.4% DPPH higher averagely compared to the comparison group.

Screening and Utilization of Allelopathic Plants for the Cultural Practice Improvement in Ginseng(Panax ginseng C.A. Meyer) (인삼재배법(人蔘栽培法) 개선(改善)을 위한 알레로파시 식물(植物) 탐색(探索) 및 이용)

  • Yang, K.J.;Kim, K.H.;Chung, I.M.
    • Korean Journal of Weed Science
    • /
    • v.18 no.3
    • /
    • pp.214-224
    • /
    • 1998
  • This study was conducted to develop labor and chemical cultural practice improvement for weed control in ginseng field. Five crop species were screened in vitro and three crop extracts were sprayed in the test allelopathic effect for weed species. Methyl alcohol extracts of rice, oat, rye and wheat straw showed inhibitory effect on the germination of six weed species, Amaranthus retroflexus, Chenopodium album, Arthraxon hispidus, Digitaria adscendens, Echinochloa crus-galli, and Setaria viridis. Especially, extract of oat straw was most effective to inhibit the germination of six weed species tested. Also, spraying the extract solution of rice, rye and wheat straw was effective to inhibit the growth of weeds in ginseng field. Ginseng root length, diameter, fresh and dry weight in extract spraying plot were higher than those of non-treatment plot.

  • PDF

Characteristics of Transformed Panax ginseng C.A. Meyer Hairy Roots: Growth and Nutrient Profile

  • Jeong Gwi-Taek;Park Don-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.43-47
    • /
    • 2006
  • Ginseng (Panax ginseng CA. Meyer) hairy root cultures, which are established via the infection of ginseng root discs with Rhizobium rhizogenes, have been used to construct profiles of both biomass growth and nutrient consumption in flask cultures. In a 250 mL shake flask culture, the maximum biomass was observed on the 59th day of the culture period, at 216.8 g (fresh wt) per liter or 11.4 g (dry wt) per liter. The hairy roots were determined to have a growth rate of 0.355 g-DW/g cells/day during the exponential growth phase and a maximum specific growth rate on day 7. Total ginseng saponin and phenolic compound contents were noted to have increased within the latter portion of the culture period. Linear correlations between increases in biomass weight and nutrient uptake were used to imply the conductivity yield $2.60g-DW/(L{\cdot}mS)$ and carbon yield 0.45 g-DW/(g sugar) in the 250 mL flask cultures. The biomass yield when two different nitrogen sources were used (ammonia and nitrate) was shown to remain approximately constant. at $0.47g-DW/(L{\cdot}mM\;NH_4$) and $0.33g-DW/(L{\cdot}mM\;NO_3$); it remained at these levels for 16 days with the ammonia. and for 24 days with the nitrate. The biomass yield when a phosphate source was used was also shown to remain approximately constant for 9 days, at $3.17g-DW/(L{\cdot}mM\;PO_4$), with an $R^2$ of 0.99.

Identification of the Age of Fresh Ginseng Root According to Number of Stem Vestiges in Rhizome (경흔적 수에 의한 수삼의 연근판별)

  • Lee, Jang-Ho;Ahn, In-Ok;Kim, Young-Chang;Bang, Kyong-Hwan;Hyun, Dong-Yun;Lee, Sung-Sik
    • Journal of Ginseng Research
    • /
    • v.31 no.3
    • /
    • pp.142-146
    • /
    • 2007
  • This experiment was conducted to find identification of ginseng root's age using the number of stem vestiges in rhizome. The number of stem vestiges in rhizome is a useful key to confirm the age of ginseng root as follow : 4-year-old root has two, 5-year-old root has three, 6-year-old root has four. The distribution of stem vestiges in rhizome each year root are as follow : 2 stem vestiges in 4-year-old root is 89.5%, 3 stem vestiges in 5-year-old root is 79.7%, 4 stem vestiges in 6-year-old root is 46.3%. However, the limiting factors of identification of ginseng root's age using the number of stem vestiges in rhizome is appearance of multi-stem per plant and appearance of destroyed stem vestige in rhizome. The ratio of appearance of multi-stem per plant and destroyed stem vestige in rhizome are increased according to root age.

Growing Three Wild Herbaceous Plants, Allium victorialis var. platyphyllum, Ligularia stenocephala, and Panax ginseng in the Understory of Larix kaempferi Plantation

  • Song, Jae Mo;Yi, Jae-Seon;Cheong, Eun Ju
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.522-530
    • /
    • 2019
  • Two edible plants, Allium victorialis var. platyphyllum and Ligularia stenocephala, and one medicinal plant, Panax ginseng, were cultivated in the understory of an artificial Larix kaempferi plantation for ten years. Growth characteristics (number of leaves and flower stalks per plant, and leaf length and width), survival rate, and yield (fresh weight of plants) per unit area (1 ㎡) were investigated one year after planting, and six and ten years following cultivation. P. ginseng and L. stenocephala survived at a high percentage for two years after planting. Results showed that P. ginseng had longer and thicker roots when aged; however, a large number of plants died and the yield was low. In contrast, almost half of A. victorialis var. platyphyllum died within two years of planting. The surviving plants grew well for ten years and the yield was increased. The leaf length and width of L. stenocephala increased; however, the survival rate and the number of leaves per plant decreased as the period of cultivation was extended. In contrast, A. victorialis var. platyphyllum survived at a lower rate (50%) than the two other crops (98% for L. stenocephala and 83% for P. ginseng) during the early cultivation period, with little change in the survival rate over an extended time; however, the yields increased. This species showed an increase in the number of flower stalks and leaves, and as a result, the larger leaves increased the yield. We evaluated the understory cultivation of three crops in a L. kaempferi plantation under natural conditions, with no irrigation or fertilization, and Allium victorialis var. platyphyllum showed the greatest growth potential among the three tested crops.

Inhibition of hypoxia-induced cyclooxygenase-2 by Korean Red Ginseng is dependent on peroxisome proliferator-activated receptor gamma

  • Song, Heewon;Lee, Young Joo
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.240-246
    • /
    • 2017
  • Background: Korean Red Ginseng (KRG) is a traditional herbal medicine made by steaming and drying fresh ginseng. It strengthens the endocrine and immune systems to ameliorate various inflammatory responses. The cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway has important implications for inflammation responses and tumorigenesis. Peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) is a transcription factor that regulates not only adipogenesis and lipid homeostasis, but also angiogenesis and inflammatory responses. Methods: The effects of the KRG on inhibition of hypoxia-induced COX-2 via $PPAR{\gamma}$ in A549 cells were determined by luciferase assay, Western blot, and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The antimigration and invasive effects of KRG were evaluated on A549 cells using migration and matrigel invasion assays. Results and conclusion: We previously reported that hypoxia-induced COX-2 protein and mRNA levels were suppressed by KRG. This study examines the possibility of $PPAR{\gamma}$ as a cellular target of KRG for the suppression of hypoxia-induced COX-2. $PPAR{\gamma}$ protein levels and $PPAR{\gamma}$-responsive element (PPRE)-driven reporter activities were increased by KRG. Reduction of hypoxia-induced COX-2 by KRG was abolished by the $PPAR{\gamma}$ inhibitor GW9662. In addition, the inhibition of $PPAR{\gamma}$ abolished the effect of KRG on hypoxia-induced cell migration and invasion. Discussion: Our results show that KRG inhibition of hypoxia-induced COX-2 expression and cell invasion is dependent on $PPAR{\gamma}$ activation, supporting the therapeutic potential for suppression of inflammation under hypoxia. Further studies are required to demonstrate whether KRG activates directly $PPAR{\gamma}$ and to identify the constituents responsible for this activity.

Enhancement and Conversion of Ginsenoside Contents in Cultured Wild Ginseng Adventitious Root (산삼 부정배양근의 진세노사이드 함량 증진과 성분 변환)

  • Kim, Chul Joong;Choi, Jae Hoo;Oh, Yeong Seon;Seong, Eun Soo;Lim, Jung Dae;Yu, Chang Yeon;Lee, Jae Geun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.6
    • /
    • pp.445-454
    • /
    • 2020
  • Background: Culturing wild ginseng adventitious root using plant factory technology provides genetic safety and high productivity. This production technology is drawing attention in the fields of functional raw materials and product development. The cultivation method using elicitors is key technology for controlling biomass and increasing secondary metabolites. Methods and Results: Elicitor treatments using methyl jasmonate, pyruvic acid, squalene, β-sistosterol were performed to amplify total ginsenosides (Rb1, Rc, Rb2, Rb3, and Rd) of cultured wild ginseng adventitious root. Thereafter, fermentation and steaming processes were performed to convert total ginsenosides into minor molecular ginsenosides (Rg3, Rk1, and Rg5). The result indicated that methyl jasmonate minimizes the reduction in fresh weight of cultured wild ginseng adventitious root and maximizes total ginsenosides (sum of Rb1, Rc, Rb2, Rb3, and Rd). Ginsenoside conversion results showed a maximum degree of conversion of 131 mg/g. Conclusions: In this study, we demonstrated that the optimal elicitor treatment method increased the content of total ginsenosides, while the steaming and fermentation processing method increased the content of minor ginsenosides.

Residual characteristics of tolclofos-methyl treated by seed dressing in ginseng (인삼 중 종자분의 처리 tolclofos-methyl의 잔류 특성)

  • Noh, Hyun-Ho;Lee, Jae-Yun;Park, So-Hyun;Lee, Kwang-Hun;Park, Hyo-Kyoung;Oh, Jae-Ho;Im, Moo-Hyeog;Kwon, Chan-Hyeok;Lee, Joong-Keun;Woo, Hee-Dong;Kwon, Ki-Sung;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.3
    • /
    • pp.217-221
    • /
    • 2012
  • This study was carried out to evaluate residual characteristics of tolclofos-methyl in ginseng and elucidate the reason for its high detection rate from fresh ginseng selling at markets. Seeds of ginseng were sowed after seed dressing with tolclofos-methyl and after a year of growth, the young seedlings were transplanted to field. They were then harvested annually until three-years of growth and the pesticide residue was analyzed in them. LOD and LOQ of the pesticide were 0.001 and 0.003 mg/kg, respectively. Recovery test was carried out to validate the analytical method for tolclofos-methyl in ginseng. The ginseng seedlings were fortified with the test pesticide at the level of LOQ, ten times of LOQ and maximum residue concentration of tolclofos-methyl. Its recovery ranged from 77.37 to 100.16%. Residual concentration of tolclofos-methyl in ginseng seedlings just before transplanting and two-year-old ginseng were from 7.58 to 8.05 and from 6.46 to 6.79 mg/kg, respectively. In case of three-year-old ginseng, it was found to be from 4.18 to 4.35 mg/kg. As a result of annual pesticide residue analysis, concentration of the pesticide was found to decrease time-coursely in ginseng. This may be due to decomposition and increasing of fresh weight of the ginseng during the cultivation periods of three years.

Studies on the Physiological Chemistry of Seed Development in Ginseng Seed (인삼식물의 종자발육 과정에 있어서의 생리화학적 연구)

  • Hee-Chun Yang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.17
    • /
    • pp.115-133
    • /
    • 1974
  • This study was done on the metabolism of chemical components during the seed development of ginseng. The changes of the chemical components were inspected in the following periods: from the early stage of flower organ formation to flowering time, from the early stage of fruiting to maturity, during the moisture stratification before sowing. From flower bud forming stage to meiosis stage, the changes in the fresh weight, dry weight, contents of carbohydrates, and contents of nitrogen compounds were slight while the content of TCA soluble phosphorus and especially the content of organic phosphorus increased markedly. From meiosis stage to microspore stage the fresh and dry weights increase greatly. Also, the total nitrogen content increases in this period. Insolub]e nitrogen was 62-70% of the total nitrogen content; the increase of insoluble nitrogen seems to have resulted form the synthesis of protein. The content of soluble sugar (reducing and non-reducing sugar) increases greatly but there was no observable increase in starch content. In this same period, TCA soluble phosphorus reached the maximum level of 85.4% of the total phosphorus. TCA insoluble phosphorus remained at the minimum content level of 14.6%. After the pollen maturation stage and during the flowering period the dry weight increased markedly and insolub]e nitrogen also increased to the level of 67% of the total nitrogen content. Also in this stage, the organic phosphorus content decreased and was found in lesser amounts than inorganic phosphorus. A rapid increase in the starch content was also observed at this stage. In the first three weeks after fruiting the ginseng fruit grows rapidly. Ninety percent of the fresh weight of ripened ginseng seed is obtained in this period. Also, total nitrogen content increased by seven times. As the fruits ripened, insoluble nitrogen increased from 65% of the total nitrogen to 80% while soluble nitrogen decreased from 35% to 20%. By the beginning of the red-ripening period, the total phosphoric acid content increased by eight times and was at its peak. In this same period, TCA soluble phosphorus was 90% of total phosphorus content and organic phosphorus had increased by 29 times. Lipid-phosphorus, nucleic acid-phosphorus and protein-phosphorus also increased during this stage. The rate of increase in carbohydrates was similar to the rate of increase in fresh weight and it was observed at its highest point three weeks after fruiting. Soluble sugar content was also highest at this time; it begins to decrease after the first three weeks. At the red-ripening stage, soluble sugar content increased again slightly, but never reached its previous level. The level of crude starch increased gradually reaching its height, 2.36% of total dry weight, a week before red-ripening, but compared with the content level of other soluble sugars crude starch content was always low. When the seeds ripened completely, more than 80% of the soluble sugar was non-reducing sugar, indicating that sucrose is the main reserve material of carbohydrates in ginseng seeds. Since endosperm of the ripened ginseng seeds contain more than 60% lipids, lipids can be said to be the most abundant reserve material in ginseng seeds; they are more abundant than carbohydrates, protein, or any other component. During the moisture stratification, ginseng seeds absorb quantities of water. Lipids, protein and starch stored in the seeds become soluble by hydrolysis and the contents of sugar, inorganic phosphorus, phospho-lipid, nucleic acid-phosphorus, protein phosphorus, and soluble nitrogen increase. By sowing time, the middle of November, embryo of the seeds grows to 4.2-4.7mm and the water content of the seeds amounts to 50-60% of the total seed weight. Also, by this time, much budding material has been accumulated. On the other hand, dry stored ginseng seeds undergo some changes. The water content of the seeds decreases to 5% and there is an observable change in the carbohydraes but the content of lipid and nitrogen compounds did not change as much as carbohydrates.

  • PDF