SOA를 도입하는 하향식 (top-down) 방법은 온톨로지를 기반으로 서비스를 분석하고 설계하는 서비스 모델링 단계를 핵심으로 봄으로써 SOA의 장점을 가장 잘 반영할 수 있는 방법으로 권장되고 있다. 그러나 대부분의 기업들은 하향식 방법이 최상이라는 것을 알면서도 기업 이윤 창출에 단기적인 효과가 드러나지 않고 도입 초기에 개발시간과 비용이 증대되므로 이를 꺼리게 된다. 특히 잘 정의된 컴포넌트 시스템을 이미 사용하고 있는 경우에 더욱 그러하다. 따라서 본 논문에서는 기존의 잘 정의된 컴포넌트시스템을 최대한 이용할 수 있는 상향식 (bottom-up) 서비스식별 방법을 제안한다. GUI는 직접 사용자의 입력을 받아 들여 이벤트를 발생시킨다는 점에 착안하여 이벤트의 경로를 연결하면 비즈니스 프로세스에 근사시킬 수 있다. 따라서 컴포넌트와 상호작용하는 GUI의 이벤트 수를 기준으로 핵심 GUI를 선정하고 핵심 GUI로부터 연결되는 이벤트 경로를 대상으로 기존의 순차패턴 마이닝 알고리즘을 변형하여 사용자의 서비스 사용 패턴을 추출한다. 실험결과 추출된 이벤트 패턴에 응집도를 적용하여 다양한 크기의 비즈니스 서비스를 식별할 수 있음을 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권6호
/
pp.1957-1980
/
2021
The significant aim of this research has always been to evaluate the mechanism for efficient and inherently aware usage of vitality in-home devices, thus improving the information of smart metering systems with regard to the usage of selected homes and the time of use. Advances in information processing are commonly used to quantify gigantic building activity data steps to boost the activity efficiency of the building energy systems. Here, some smart data mining models are offered to measure, and predict the time series for energy in order to expose different ephemeral principles for using energy. Such considerations illustrate the use of machines in relation to time, such as day hour, time of day, week, month and year relationships within a family unit, which are key components in gathering and separating the effect of consumers behaviors in the use of energy and their pattern of energy prediction. It is necessary to determine the multiple relations through the usage of different appliances from simultaneous information flows. In comparison, specific relations among interval-based instances where multiple appliances use continue for certain duration are difficult to determine. In order to resolve these difficulties, an unsupervised energy time-series data clustering and a frequent pattern mining study as well as a deep learning technique for estimating energy use were presented. A broad test using true data sets that are rich in smart meter data were conducted. The exact results of the appliance designs that were recognized by the proposed model were filled out by Deep Convolutional Neural Networks (CNN) and Recurrent Neural Networks (LSTM and GRU) at each stage, with consolidated accuracy of 94.79%, 97.99%, 99.61%, for 25%, 50%, and 75%, respectively.
침입탐지란 컴퓨터와 네트워크 자원에 대한 유해한 침입 행동을 식별하고 대응하는 과정이다. 최근 인터넷의 급속한 발달과 함께 침입의 유형들이 복잡해지고 새로운 침입유형의 발생빈도가 높아져 이에 대한 빠르고 정확한 대응이 필요하다. 따라서 이 논문에서는 침입탐지 시스템의 이러한 문제점을 해결하기 위한 한 방안으로 지능적이고 자동화된 탐지를 지원하기 위한 경보데이터 순차 패턴 마이닝 기법을 제안한다. 제안된 순차 패턴 마이닝 기법은 기존의 마이닝 기법 중 prefixSpan 알고리즘을 경보데이터의 특성에 맞게 확장 설계하였다. 이 확장 설계된 순차패턴 마이너는 보안정책 실행시스템의 경보데이터 분석기의 일부분으로 구성된다. 구현된 순차패턴 마이너는 탐사된 패턴 내에서 적용 가능한 침입패턴들을 찾아내어 효율적으로 침입을 탐지하여 보안정책 실행 시스템에서 이를 기반으로 새로운 보안규칙을 생성하고 침입에 대응할 수 있다. 제안된 경보데이터 순차 패턴 마이너를 이용하여 침입의 시퀀스의 행동을 예측하거나 기술하는 규칙들을 생성하므로 침입을 효율적으로 예측하고 대응할 수 있다.
Journal of Information Technology Applications and Management
/
제24권4호
/
pp.187-196
/
2017
It is urgent to prepare countermeasures for traffic congestion problems of Korea's metropolitan area where central functions such as economic, social, cultural, and education are excessively concentrated. Most users of public transportation in metropolitan areas including Seoul use the traffic cards. If various information is extracted from traffic big data produced by the traffic cards, they can provide basic data for transport policies, land usages, or facility plans. Therefore, in this study, we extract valuable information such as the subway passengers' frequent travel patterns from the big traffic data provided by the Seoul Metropolitan Government Big Data Campus. For this, we use a Hadoop (High-Availability Distributed Object-Oriented Platform) to preprocess the big data and store it into a Mongo database in order to analyze it by a sequential pattern data mining technique. Since we analysis the actual big data, that is, the traffic cards' data provided by the Seoul Metropolitan Government Big Data Campus, the analyzed results can be used as an important referenced data when the Seoul government makes a plan about the metropolitan traffic policies.
최근 네트워크 기술 발전과 함께 IoT 및 소셜 네트워크 서비스의 활성화로 인해 많은 그래프 스트림 데이터가 생성되고 있다. 본 논문에서는 압축률 및 압축 시간에 대해 중점적으로 연구되던 기존의 압축 기법에 그래프 마이닝을 적용하여 스트림 그래프 환경을 함께 고려한 그래프 압축 기술을 제안한다. 또한, 최신 패턴을 유지하여 실시간으로 변화하는 스트림 그래프에서 압축 효율 및 처리속도를 향상시킨다. 본 논문에서는 그래프 스트림 처리를 위한 점진적 빈발 패턴 기반 압축 기법을 제안하였다. 제안하는 기법의 우수성을 보이기 위해 압축률과 처리시간을 기존기법과 비교하여 성능평가를 수행한다. 제안하는 기법은 그래프 데이터의 크기가 커질 때 중복되는 데이터가 많아져 기존 기법보다 빠른 처리속도를 보인다. 따라서, 빠른 처리가 요구되는 스트림 환경에서 제안하는 기법을 활용할 수 있다.
심혈관계 질환의 진단 위해서 복합 진단 지표를 이용한 출현 패턴 기반의 분류 기법을 제안하였다. 복합 진단 지표 적용을 위해서 심박동변이도의 선형/비선형적 특징들을 세 가지 누운 자세에 대해 분석하였고 ST-segments로부터 4개의 진단 지표를 추출하였다. 이 논문에서는 질환진단을 위해서 필수 출현 패턴을 이용한 분류 모델을 제안하였다. 이 분류 기법은 환자 그룹의 질환 패턴들을 발견하며, 이러한 출현 패턴은 심혈관계 질환 환자들에서는 빈발하지만 정상인 그룹에서는 빈발하지 않는 패턴들이다. 제안된 분류 알고리즘의 평가를 위해서 120명의 협심증(AP: angina pectrois) 환자, 13명의 급성관상동맥증후군(ACS: acute coronary syndrome) 환자 그리고 128명의 정상인 데이터를 사용하였다. 실험 결과 복합 지표를 사용하였을 때, 세 그룹의 분류에 대한 정확도는 약 88.3%였다.
Purpose : Nowadays excrement-related disease that repeats constipation and diarrhea is on the increase due to the change of dietary and lack of exercise, etc. We analyzed Bangyakhappyeon in order to find out the materia medica which is used for the excrement patterns. Methods : The database used in present thesisis consist of disease pattern, nature of medicinals and materia medica from Bangyakhappyeon was constructed. We analyzed the nature of medicinals of excrement patterns(or symptom) by frequency analysis and network analysis, and also searched main materia medica of excrement patterns(or symptom) by frequency analysis and rule mining. Results : We analyzed the nature of medicinals of excrement patterns(or symptom) in Bangyakhappyeon. And we researched the high frequency materia medica, high specificity materia medica and high frequent paired-drugs as main materia medica of excrement patterns(or symptom). Conclusion : This study found the information about frequency relationship between excrement patterns(or symptoms) and materia medica.
In recent years, progress in hardware technology has resulted in the possibility of monitoring many events in real time. The volume of incoming data may be so large, that monitoring all individual data might be intractable. Revisiting any particular record can also be impossible in this environment. Therefore, many database schemes, such as aggregation, join, frequent pattern mining, and indexing, become more challenging in this context. This paper surveys the previous efforts to resolve these issues in processing data streams. The emphasis is on specifying and processing sliding window queries, which are supported in many stream processing engines. We also review the related work on stream query processing, including synopsis structures, plan sharing, operator scheduling, load shedding, and disorder control.
본 논문에서는 데이터베이스에 새로운 트랜잭션이 추가되었을 때 순차 패턴을 갱신하는 문제를 연구하였다. 트랜잭션이 순차적으로 증가되는 환경에서 기존에 발견된 빈발 시퀸스를 재사용하여 순차패턴을 갱신하는 효율적인 알고리즘을 제안한다. 본 논문에서 제안한 방법은 후보 집합의 개수를 효율적으로 줄임으로써 AprioriAll이나 PrefixSpan 알고리즘보다 좋은 성능을 보임을 실험으로 확인하였다.
FP-tree(Frequent Pattern Tree) 연관 규칙 탐사 알고리즘은 DB 스캔에 대한 부담을 획기적으로 절감시킴으로써 전체적인 성능을 향상시키고자 제안되었다. 그런데, FP-tree는 DB에 저장된 거래 내용중 빈발 항목을 포함하는 모든 거래를 트리에 저장해야 하기 때문에 그만큼 많은 메모리를 필요로 한다. 이 논문에서는 범용 운영체제인 유닉스 시스템을 사용해서 메모리 사용 측면에서 F.P. Tree 알고리즘의 타당성과 이에 따른 성능 특성을 관찰하였다. 그 결과, F.P. Tree 알고리즘은 현대 컴퓨터에서 보편화된 512MB${\sim}$1GB의 주메모리 시스템에서 무리는 없으나, 메모리 소요량이 DB의 크기나 빈발 항목 집합의 수 보다는 거래의 길이 등 DB의 특성에 따라 급격하게 증가하는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.