• 제목/요약/키워드: Frequent pattern mining

검색결과 103건 처리시간 0.025초

비즈니스 서비스 식별을 위한 변형 순차패턴 마이닝 알고리즘 (Adapted Sequential Pattern Mining Algorithms for Business Service Identification)

  • 이정원
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.87-99
    • /
    • 2009
  • SOA를 도입하는 하향식 (top-down) 방법은 온톨로지를 기반으로 서비스를 분석하고 설계하는 서비스 모델링 단계를 핵심으로 봄으로써 SOA의 장점을 가장 잘 반영할 수 있는 방법으로 권장되고 있다. 그러나 대부분의 기업들은 하향식 방법이 최상이라는 것을 알면서도 기업 이윤 창출에 단기적인 효과가 드러나지 않고 도입 초기에 개발시간과 비용이 증대되므로 이를 꺼리게 된다. 특히 잘 정의된 컴포넌트 시스템을 이미 사용하고 있는 경우에 더욱 그러하다. 따라서 본 논문에서는 기존의 잘 정의된 컴포넌트시스템을 최대한 이용할 수 있는 상향식 (bottom-up) 서비스식별 방법을 제안한다. GUI는 직접 사용자의 입력을 받아 들여 이벤트를 발생시킨다는 점에 착안하여 이벤트의 경로를 연결하면 비즈니스 프로세스에 근사시킬 수 있다. 따라서 컴포넌트와 상호작용하는 GUI의 이벤트 수를 기준으로 핵심 GUI를 선정하고 핵심 GUI로부터 연결되는 이벤트 경로를 대상으로 기존의 순차패턴 마이닝 알고리즘을 변형하여 사용자의 서비스 사용 패턴을 추출한다. 실험결과 추출된 이벤트 패턴에 응집도를 적용하여 다양한 크기의 비즈니스 서비스를 식별할 수 있음을 보였다.

Building Energy Time Series Data Mining for Behavior Analytics and Forecasting Energy consumption

  • Balachander, K;Paulraj, D
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.1957-1980
    • /
    • 2021
  • The significant aim of this research has always been to evaluate the mechanism for efficient and inherently aware usage of vitality in-home devices, thus improving the information of smart metering systems with regard to the usage of selected homes and the time of use. Advances in information processing are commonly used to quantify gigantic building activity data steps to boost the activity efficiency of the building energy systems. Here, some smart data mining models are offered to measure, and predict the time series for energy in order to expose different ephemeral principles for using energy. Such considerations illustrate the use of machines in relation to time, such as day hour, time of day, week, month and year relationships within a family unit, which are key components in gathering and separating the effect of consumers behaviors in the use of energy and their pattern of energy prediction. It is necessary to determine the multiple relations through the usage of different appliances from simultaneous information flows. In comparison, specific relations among interval-based instances where multiple appliances use continue for certain duration are difficult to determine. In order to resolve these difficulties, an unsupervised energy time-series data clustering and a frequent pattern mining study as well as a deep learning technique for estimating energy use were presented. A broad test using true data sets that are rich in smart meter data were conducted. The exact results of the appliance designs that were recognized by the proposed model were filled out by Deep Convolutional Neural Networks (CNN) and Recurrent Neural Networks (LSTM and GRU) at each stage, with consolidated accuracy of 94.79%, 97.99%, 99.61%, for 25%, 50%, and 75%, respectively.

경보데이터 패턴 분석을 위한 순차 패턴 마이너 설계 및 구현 (Design and Implementation of Sequential Pattern Miner to Analyze Alert Data Pattern)

  • 신문선;백우진
    • 인터넷정보학회논문지
    • /
    • 제10권2호
    • /
    • pp.1-13
    • /
    • 2009
  • 침입탐지란 컴퓨터와 네트워크 자원에 대한 유해한 침입 행동을 식별하고 대응하는 과정이다. 최근 인터넷의 급속한 발달과 함께 침입의 유형들이 복잡해지고 새로운 침입유형의 발생빈도가 높아져 이에 대한 빠르고 정확한 대응이 필요하다. 따라서 이 논문에서는 침입탐지 시스템의 이러한 문제점을 해결하기 위한 한 방안으로 지능적이고 자동화된 탐지를 지원하기 위한 경보데이터 순차 패턴 마이닝 기법을 제안한다. 제안된 순차 패턴 마이닝 기법은 기존의 마이닝 기법 중 prefixSpan 알고리즘을 경보데이터의 특성에 맞게 확장 설계하였다. 이 확장 설계된 순차패턴 마이너는 보안정책 실행시스템의 경보데이터 분석기의 일부분으로 구성된다. 구현된 순차패턴 마이너는 탐사된 패턴 내에서 적용 가능한 침입패턴들을 찾아내어 효율적으로 침입을 탐지하여 보안정책 실행 시스템에서 이를 기반으로 새로운 보안규칙을 생성하고 침입에 대응할 수 있다. 제안된 경보데이터 순차 패턴 마이너를 이용하여 침입의 시퀀스의 행동을 예측하거나 기술하는 규칙들을 생성하므로 침입을 효율적으로 예측하고 대응할 수 있다.

  • PDF

하둡과 순차패턴 마이닝 기술을 통한 교통카드 빅데이터 분석 (Analysis of Traffic Card Big Data by Hadoop and Sequential Mining Technique)

  • 김우생;김용훈;박희성;박진규
    • Journal of Information Technology Applications and Management
    • /
    • 제24권4호
    • /
    • pp.187-196
    • /
    • 2017
  • It is urgent to prepare countermeasures for traffic congestion problems of Korea's metropolitan area where central functions such as economic, social, cultural, and education are excessively concentrated. Most users of public transportation in metropolitan areas including Seoul use the traffic cards. If various information is extracted from traffic big data produced by the traffic cards, they can provide basic data for transport policies, land usages, or facility plans. Therefore, in this study, we extract valuable information such as the subway passengers' frequent travel patterns from the big traffic data provided by the Seoul Metropolitan Government Big Data Campus. For this, we use a Hadoop (High-Availability Distributed Object-Oriented Platform) to preprocess the big data and store it into a Mongo database in order to analyze it by a sequential pattern data mining technique. Since we analysis the actual big data, that is, the traffic cards' data provided by the Seoul Metropolitan Government Big Data Campus, the analyzed results can be used as an important referenced data when the Seoul government makes a plan about the metropolitan traffic policies.

그래프 스트림 처리를 위한 점진적 빈발 패턴 기반 인-메모리 압축 기법 (In-memory Compression Scheme Based on Incremental Frequent Patterns for Graph Streams)

  • 이현병;신보경;복경수;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제22권1호
    • /
    • pp.35-46
    • /
    • 2022
  • 최근 네트워크 기술 발전과 함께 IoT 및 소셜 네트워크 서비스의 활성화로 인해 많은 그래프 스트림 데이터가 생성되고 있다. 본 논문에서는 압축률 및 압축 시간에 대해 중점적으로 연구되던 기존의 압축 기법에 그래프 마이닝을 적용하여 스트림 그래프 환경을 함께 고려한 그래프 압축 기술을 제안한다. 또한, 최신 패턴을 유지하여 실시간으로 변화하는 스트림 그래프에서 압축 효율 및 처리속도를 향상시킨다. 본 논문에서는 그래프 스트림 처리를 위한 점진적 빈발 패턴 기반 압축 기법을 제안하였다. 제안하는 기법의 우수성을 보이기 위해 압축률과 처리시간을 기존기법과 비교하여 성능평가를 수행한다. 제안하는 기법은 그래프 데이터의 크기가 커질 때 중복되는 데이터가 많아져 기존 기법보다 빠른 처리속도를 보인다. 따라서, 빠른 처리가 요구되는 스트림 환경에서 제안하는 기법을 활용할 수 있다.

심혈관계 질환 진단을 위한 복합 진단 지표와 출현 패턴 기반의 분류 기법 (Multi-parametric Diagnosis Indexes and Emerging Pattern based Classification Technique for Diagnosing Cardiovascular Disease)

  • 이헌규;노기용;류근호;정두영
    • 정보처리학회논문지D
    • /
    • 제16D권1호
    • /
    • pp.11-26
    • /
    • 2009
  • 심혈관계 질환의 진단 위해서 복합 진단 지표를 이용한 출현 패턴 기반의 분류 기법을 제안하였다. 복합 진단 지표 적용을 위해서 심박동변이도의 선형/비선형적 특징들을 세 가지 누운 자세에 대해 분석하였고 ST-segments로부터 4개의 진단 지표를 추출하였다. 이 논문에서는 질환진단을 위해서 필수 출현 패턴을 이용한 분류 모델을 제안하였다. 이 분류 기법은 환자 그룹의 질환 패턴들을 발견하며, 이러한 출현 패턴은 심혈관계 질환 환자들에서는 빈발하지만 정상인 그룹에서는 빈발하지 않는 패턴들이다. 제안된 분류 알고리즘의 평가를 위해서 120명의 협심증(AP: angina pectrois) 환자, 13명의 급성관상동맥증후군(ACS: acute coronary syndrome) 환자 그리고 128명의 정상인 데이터를 사용하였다. 실험 결과 복합 지표를 사용하였을 때, 세 그룹의 분류에 대한 정확도는 약 88.3%였다.

데이터 마이닝을 이용한 대변과 약물간의 연관성 분석 -방약합편을 중심으로- (A study of relationship between excrement and materia medica in Bangyakhappyeon based on the data mining analysis)

  • 송영섭;양동훈;박영재;박영배
    • 대한한의진단학회지
    • /
    • 제16권2호
    • /
    • pp.33-46
    • /
    • 2012
  • Purpose : Nowadays excrement-related disease that repeats constipation and diarrhea is on the increase due to the change of dietary and lack of exercise, etc. We analyzed Bangyakhappyeon in order to find out the materia medica which is used for the excrement patterns. Methods : The database used in present thesisis consist of disease pattern, nature of medicinals and materia medica from Bangyakhappyeon was constructed. We analyzed the nature of medicinals of excrement patterns(or symptom) by frequency analysis and network analysis, and also searched main materia medica of excrement patterns(or symptom) by frequency analysis and rule mining. Results : We analyzed the nature of medicinals of excrement patterns(or symptom) in Bangyakhappyeon. And we researched the high frequency materia medica, high specificity materia medica and high frequent paired-drugs as main materia medica of excrement patterns(or symptom). Conclusion : This study found the information about frequency relationship between excrement patterns(or symptoms) and materia medica.

A Review of Window Query Processing for Data Streams

  • Kim, Hyeon Gyu;Kim, Myoung Ho
    • Journal of Computing Science and Engineering
    • /
    • 제7권4호
    • /
    • pp.220-230
    • /
    • 2013
  • In recent years, progress in hardware technology has resulted in the possibility of monitoring many events in real time. The volume of incoming data may be so large, that monitoring all individual data might be intractable. Revisiting any particular record can also be impossible in this environment. Therefore, many database schemes, such as aggregation, join, frequent pattern mining, and indexing, become more challenging in this context. This paper surveys the previous efforts to resolve these issues in processing data streams. The emphasis is on specifying and processing sliding window queries, which are supported in many stream processing engines. We also review the related work on stream query processing, including synopsis structures, plan sharing, operator scheduling, load shedding, and disorder control.

점진적인 순차 패턴 갱신 알고리즘 (An Incremental Updating Algorithm of Sequential Patterns)

  • 김학자;황환규
    • 전자공학회논문지CI
    • /
    • 제43권5호
    • /
    • pp.17-28
    • /
    • 2006
  • 본 논문에서는 데이터베이스에 새로운 트랜잭션이 추가되었을 때 순차 패턴을 갱신하는 문제를 연구하였다. 트랜잭션이 순차적으로 증가되는 환경에서 기존에 발견된 빈발 시퀸스를 재사용하여 순차패턴을 갱신하는 효율적인 알고리즘을 제안한다. 본 논문에서 제안한 방법은 후보 집합의 개수를 효율적으로 줄임으로써 AprioriAll이나 PrefixSpan 알고리즘보다 좋은 성능을 보임을 실험으로 확인하였다.

FP-tree 연관 규칙 탐사 알고리즘의 구현 및 성능 특성 (An Implementation and Performance Characteristics of the FP-tree Association Rules Mining Algorithm)

  • 이형봉
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 추계학술발표대회
    • /
    • pp.337-340
    • /
    • 2006
  • FP-tree(Frequent Pattern Tree) 연관 규칙 탐사 알고리즘은 DB 스캔에 대한 부담을 획기적으로 절감시킴으로써 전체적인 성능을 향상시키고자 제안되었다. 그런데, FP-tree는 DB에 저장된 거래 내용중 빈발 항목을 포함하는 모든 거래를 트리에 저장해야 하기 때문에 그만큼 많은 메모리를 필요로 한다. 이 논문에서는 범용 운영체제인 유닉스 시스템을 사용해서 메모리 사용 측면에서 F.P. Tree 알고리즘의 타당성과 이에 따른 성능 특성을 관찰하였다. 그 결과, F.P. Tree 알고리즘은 현대 컴퓨터에서 보편화된 512MB${\sim}$1GB의 주메모리 시스템에서 무리는 없으나, 메모리 소요량이 DB의 크기나 빈발 항목 집합의 수 보다는 거래의 길이 등 DB의 특성에 따라 급격하게 증가하는 것으로 나타났다.

  • PDF