• Title/Summary/Keyword: Frequent Item

Search Result 117, Processing Time 0.02 seconds

A Fast Algorithm for Mining Association Rules in Web Log Data (상품간 연관 규칙의 효율적 탐색 방법에 관한 연구 : 인터넷 쇼핑몰을 중심으로)

  • 오은정;오상봉
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2003.11a
    • /
    • pp.621-626
    • /
    • 2003
  • Mining association rules in web log files can be divided into two steps: 1) discovering frequent item sets in web data; 2) extracting association rules from the frequent item sets found in the previous step. This paper suggests an algorithm for finding frequent item sets efficiently The essence of the proposed algorithm is to transform transaction data files into matrix format. Our experimental results show that the suggested algorithm outperforms the Apriori algorithm, which is widely used to discover frequent item sets, in terms of scan frequency and execution time.

  • PDF

Association Rule Discovery using TID List Table (TID 리스트 테이블을 이용한 연관 규칙 탐사)

  • Chai, Duck-Jin;Hwang, Bu-Hyun
    • Journal of KIISE:Databases
    • /
    • v.32 no.3
    • /
    • pp.219-227
    • /
    • 2005
  • In this paper, we propose an efficient algorithm which generates frequent itemsets by only one database scanning. A frequent itemset is subset of an itemset which is accessed by a transaction. For each item, if informations about transactions accessing the item are exist, it is possible to generate frequent itemsets only by the extraction of items haying an identical transaction ID. Proposed method in this paper generates the data structure which stores transaction ID for each item by only one database scanning and generates 2-frequent itemsets by using the hash technique at the same time. k(k$\geq$3)-frequent itemsets are simply found by comparing previously generated data structure and transaction ID. Proposed algorithm can efficiently generate frequent itemsets by only one database scanning .

Designing OLAP Cube Structures for Market Basket Analysis (장바구니 분석용 OLAP 큐브 구조의 설계)

  • Yu, Han-Ju;Choi, In-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.4
    • /
    • pp.179-189
    • /
    • 2007
  • Every purchase a customer makes builds patterns about how products are purchased together. The process of finding these patterns, called market basket analysis, is composed of two steps in the Microsoft Association Algorithm. The first step is to find frequent item-sets. The second step which requires much less time than the first step does is to generate association rules based on frequent item-sets. Even though the first step, finding frequent item-sets, is the core part of market basket analysis, when applied to Online Analytical Processing(OLAP) cubes it always raises several points such as longitudinal analysis becomes impossible and many unpractical transactions are built up. In this paper, a new OLAP cube structures designing method which makes longitudinal analysis be possible and also makes only real customers' purchase patterns be identified is proposed for market basket analysis.

  • PDF

Performance Analysis of Frequent Pattern Mining with Multiple Minimum Supports (다중 최소 임계치 기반 빈발 패턴 마이닝의 성능분석)

  • Ryang, Heungmo;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.1-8
    • /
    • 2013
  • Data mining techniques are used to find important and meaningful information from huge databases, and pattern mining is one of the significant data mining techniques. Pattern mining is a method of discovering useful patterns from the huge databases. Frequent pattern mining which is one of the pattern mining extracts patterns having higher frequencies than a minimum support threshold from databases, and the patterns are called frequent patterns. Traditional frequent pattern mining is based on a single minimum support threshold for the whole database to perform mining frequent patterns. This single support model implicitly supposes that all of the items in the database have the same nature. In real world applications, however, each item in databases can have relative characteristics, and thus an appropriate pattern mining technique which reflects the characteristics is required. In the framework of frequent pattern mining, where the natures of items are not considered, it needs to set the single minimum support threshold to a too low value for mining patterns containing rare items. It leads to too many patterns including meaningless items though. In contrast, we cannot mine any pattern if a too high threshold is used. This dilemma is called the rare item problem. To solve this problem, the initial researches proposed approximate approaches which split data into several groups according to item frequencies or group related rare items. However, these methods cannot find all of the frequent patterns including rare frequent patterns due to being based on approximate techniques. Hence, pattern mining model with multiple minimum supports is proposed in order to solve the rare item problem. In the model, each item has a corresponding minimum support threshold, called MIS (Minimum Item Support), and it is calculated based on item frequencies in databases. The multiple minimum supports model finds all of the rare frequent patterns without generating meaningless patterns and losing significant patterns by applying the MIS. Meanwhile, candidate patterns are extracted during a process of mining frequent patterns, and the only single minimum support is compared with frequencies of the candidate patterns in the single minimum support model. Therefore, the characteristics of items consist of the candidate patterns are not reflected. In addition, the rare item problem occurs in the model. In order to address this issue in the multiple minimum supports model, the minimum MIS value among all of the values of items in a candidate pattern is used as a minimum support threshold with respect to the candidate pattern for considering its characteristics. For efficiently mining frequent patterns including rare frequent patterns by adopting the above concept, tree based algorithms of the multiple minimum supports model sort items in a tree according to MIS descending order in contrast to those of the single minimum support model, where the items are ordered in frequency descending order. In this paper, we study the characteristics of the frequent pattern mining based on multiple minimum supports and conduct performance evaluation with a general frequent pattern mining algorithm in terms of runtime, memory usage, and scalability. Experimental results show that the multiple minimum supports based algorithm outperforms the single minimum support based one and demands more memory usage for MIS information. Moreover, the compared algorithms have a good scalability in the results.

Frequent Items Mining based on Regression Model in Data Streams (스트림 데이터에서 회귀분석에 기반한 빈발항목 예측)

  • Lee, Uk-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.147-158
    • /
    • 2009
  • Recently, the data model in stream data environment has massive, continuous, and infinity properties. However the stream data processing like query process or data analysis is conducted using a limited capacity of disk or memory. In these environment, the traditional frequent pattern discovery on transaction database can be performed because it is difficult to manage the information continuously whether a continuous stream data is the frequent item or not. In this paper, we propose the method which we are able to predict the frequent items using the regression model on continuous stream data environment. We can use as a prediction model on indefinite items by constructing the regression model on stream data. We will show that the proposed method is able to be efficiently used on stream data environment through a variety of experiments.

An Efficient Tree Structure Method for Mining Association Rules (트리 구조를 이용한 연관규칙의 효율적 탐색)

  • Kim, Chang-Oh;Ahn, Kwang-Il;Kim, Seong-Jip;Kim, Jae-Yearn
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.30-36
    • /
    • 2001
  • We present a new algorithm for mining association rules in the large database. Association rules are the relationships of items in the same transaction. These rules provide useful information for marketing. Since Apriori algorithm was introduced in 1994, many researchers have worked to improve Apriori algorithm. However, the drawback of Apriori-based algorithm is that it scans the transaction database repeatedly. The algorithm which we propose scans the database twice. The first scanning of the database collects frequent length l-itemsets. And then, the algorithm scans the database one more time to construct the data structure Common-Item Tree which stores the information about frequent itemsets. To find all frequent itemsets, the algorithm scans Common-Item Tree instead of the database. As scanning Common-Item Tree takes less time than scanning the database, the algorithm proposed is more efficient than Apriori-based algorithm.

  • PDF

A Study on WT-Algorithm for Effective Reduction of Association Rules (효율적인 연관규칙 감축을 위한 WT-알고리즘에 관한 연구)

  • Park, Jin-Hee;Pi, Su-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.5
    • /
    • pp.61-69
    • /
    • 2015
  • We are in overload status of information not just in a flood of information due to the data pouring from various kinds of mobile devices, online and Social Network Service(SNS) every day. While there are many existing information already created, lots of new information has been created from moment to moment. Linkage analysis has the shortcoming in that it is difficult to find the information we want since the number of rules increases geometrically as the number of item increases with the method of finding out frequent item set where the frequency of item is bigger than minimum support in this information. In this regard, this thesis proposes WT-algorithm that represents the transaction data set as Boolean variable item and grants weight to each item by making algorithm with Quine-McKluskey used to simplify the logical function. The proposed algorithm can improve efficiency of data mining by reducing the unnecessary rules due to the advantage of simplification regardless of number of items.

Performance analysis of Frequent Itemset Mining Technique based on Transaction Weight Constraints (트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 기법의 성능분석)

  • Yun, Unil;Pyun, Gwangbum
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • In recent years, frequent itemset mining for considering the importance of each item has been intensively studied as one of important issues in the data mining field. According to strategies utilizing the item importance, itemset mining approaches for discovering itemsets based on the item importance are classified as follows: weighted frequent itemset mining, frequent itemset mining using transactional weights, and utility itemset mining. In this paper, we perform empirical analysis with respect to frequent itemset mining algorithms based on transactional weights. The mining algorithms compute transactional weights by utilizing the weight for each item in large databases. In addition, these algorithms discover weighted frequent itemsets on the basis of the item frequency and weight of each transaction. Consequently, we can see the importance of a certain transaction through the database analysis because the weight for the transaction has higher value if it contains many items with high values. We not only analyze the advantages and disadvantages but also compare the performance of the most famous algorithms in the frequent itemset mining field based on the transactional weights. As a representative of the frequent itemset mining using transactional weights, WIS introduces the concept and strategies of transactional weights. In addition, there are various other state-of-the-art algorithms, WIT-FWIs, WIT-FWIs-MODIFY, and WIT-FWIs-DIFF, for extracting itemsets with the weight information. To efficiently conduct processes for mining weighted frequent itemsets, three algorithms use the special Lattice-like data structure, called WIT-tree. The algorithms do not need to an additional database scanning operation after the construction of WIT-tree is finished since each node of WIT-tree has item information such as item and transaction IDs. In particular, the traditional algorithms conduct a number of database scanning operations to mine weighted itemsets, whereas the algorithms based on WIT-tree solve the overhead problem that can occur in the mining processes by reading databases only one time. Additionally, the algorithms use the technique for generating each new itemset of length N+1 on the basis of two different itemsets of length N. To discover new weighted itemsets, WIT-FWIs performs the itemset combination processes by using the information of transactions that contain all the itemsets. WIT-FWIs-MODIFY has a unique feature decreasing operations for calculating the frequency of the new itemset. WIT-FWIs-DIFF utilizes a technique using the difference of two itemsets. To compare and analyze the performance of the algorithms in various environments, we use real datasets of two types (i.e., dense and sparse) in terms of the runtime and maximum memory usage. Moreover, a scalability test is conducted to evaluate the stability for each algorithm when the size of a database is changed. As a result, WIT-FWIs and WIT-FWIs-MODIFY show the best performance in the dense dataset, and in sparse dataset, WIT-FWI-DIFF has mining efficiency better than the other algorithms. Compared to the algorithms using WIT-tree, WIS based on the Apriori technique has the worst efficiency because it requires a large number of computations more than the others on average.

Personalized Group Recommendation Using Collaborative Filtering and Frequent Pattern (협업 필터링과 빈발 패턴을 이용한 개인화된 그룹 추천)

  • Kim, Jung Woo;Park, Kwang-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.768-774
    • /
    • 2016
  • This paper deals with a method to recommend the combination of items as a group according to similarity to handle application area such as fashion and cooking, while the previous methods recommend single item such as a book, music or movie. Collaborative filtering is a method to recommend an item selected by users with similar tendency based on similarity between users. In this paper, the proposed method generates a set of frequent items based on collaborative filtering and association rules and recommends a group by similarity between groups. To show the validity of the proposed method, experiments are performed with purchase data collected from e-commerce for four months.

Memory Improvement Method for Extraction of Frequent Patterns in DataBase (데이터베이스에서 빈발패턴의 추출을 위한 메모리 향상기법)

  • Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • Since frequent item extraction so far requires searching for patterns and traversal for the FP-Tree, it is more likely to store the mining data in a tree and thus CPU time is required for its searching. In order to overcome these drawbacks, in this paper, we provide each item with its location identification of transaction data without relying on conditional FP-Tree and convert transaction data into 2-dimensional position information look-up table, resulting in the facilitation of time and spatial accessibility. We propose an algorithm that considers the mapping scheme between the location of items and items that guarantees the linear time complexity. Experimental results show that the proposed method can reduce many execution time and memory usage based on the data set obtained from the FIMI repository website.