• 제목/요약/키워드: Frequency-strain curve

검색결과 33건 처리시간 0.027초

주파수 의존성을 고려한 등가선형해석기법의 검증 (Verification of Frequency-Dependent Equivalent Linear Method)

  • 정창균;곽동엽;박두희
    • 한국지반공학회논문집
    • /
    • 제24권12호
    • /
    • pp.113-120
    • /
    • 2008
  • 1차원 지반응답해석은 지반에 의한 지진동의 증폭현상을 모사하는 데 널리 사용되고 있다. 가장 널리 사용되고 있는 등가선형 지반응답해석기법은 유효변형률에 상응하는 전단탄성계수와 감쇠비를 전 주파수 영역에 일률적으로 적용하며, 진동주파수에 대한 지반 응답의 영향을 고려하지 않는다. 지반의 비선형 거동을 주파수영역에서 보다 정확하게 모사하기 위하여 진동주파수와 지반거동의 상관관계를 주파수-변형률 곡선으로써 모의하는 등가선형해석기법이 개발되었으며, 이 방법은 기존의 등가선형해석기법에 비하여 정확성을 향상시킨다고 알려져 있다. 이제까지 다양한 형상의 주파수변형률 곡선이 제안되었으며, 이들은 한결같이 해석의 정확성을 증가시킨다고 주장된 바 있다. 본 연구에서는 기존의 연구에서 제안되었건 두 개의 주파수-변형률 관계 완화곡선과 본 연구에서 새롭게 제안된 세 개의 곡선을 이용하여 주파수 의존성을 고려한 등가선형해석기법의 정확성을 검증하였다. 검증에는 세 개의 부지에서 기록된 6개의 지진파가 사용되었다. 해석결과, 완화곡선은 지반응답에 지배적인 영향을 미치는 것으로 나타났으며, 주파수 의존성을 고려한 해석은 정확성을 향상시킬수 있는 것으로 나타났다. 하지만, 모든 사례에서 가장 정확하게 응답을 예측하는 완화곡선은 없는 것으로 나타났으며, 해석사례별로 최적의 완화곡선이 다른 것으로 나타났다. 따라서, FDEL 해석 수행 시, 다양한 완화곡선을 사용해야 할 것으로 판단되며 등가선형해석과 병행해서 수행되어야 한다고 판단된다.

주파수-변형률 곡선의 개발 및 검증 (Development & Verification of Frequency-Strain Dependence Curve)

  • 정창균;곽동엽;박두희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.146-153
    • /
    • 2009
  • One dimensional site response analysis is widely used in prediction of the ground motion that is induced by earthquake. Equivalent linear analysis is the most widely used method due to its simplicity and ease of use. However, the equivalent linear method has been known to be unreliable since it approximates the nonlinear soil behavior within the linear framework. To consider the nonlinearity of the ground at frequency domain, frequency dependent algorithms that can simulate shear strain - frequency dependency have been proposed. In this study, the results of the modified equivalent linear analysis are compared to evaluate the degree of improvement and the applicability of the modified algorithms. Results show the novel smoothed curve that is proposed by this study indicates the most stable prediction and can enhance the accuracy of the prediction.

  • PDF

A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates

  • Mahmoudpour, E.;Hosseini-Hashemi, SH.;Faghidian, S.A.
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.103-119
    • /
    • 2018
  • In the present research, an attempt is made to obtain a semi analytical solution for both nonlinear natural frequency and forced vibration of embedded functionally graded double layered nanoplates with all edges simply supported based on nonlocal strain gradient elasticity theory. The interaction of van der Waals forces between adjacent layers is included. For modeling surrounding elastic medium, the nonlinear Winkler-Pasternak foundation model is employed. The governing partial differential equations have been derived based on the Mindlin plate theory utilizing the von Karman strain-displacement relations. Subsequently, using the Galerkin method, the governing equations sets are reduced to nonlinear ordinary differential equations. The semi analytical solution of the nonlinear natural frequencies using the homotopy analysis method and the exact solution of the nonlinear forced vibration through the Harmonic Balance method are then established. The results show that the length scale parameters give nonlinearity of the hardening type in frequency response curve and the increase in material length scale parameter causes to increase in maximum response amplitude, whereas the increase in nonlocal parameter causes to decrease in maximum response amplitude. Increasing the material length scale parameter increases the width of unstable region in the frequency response curve.

Domain Contribution in the Electric-field-induced Strain of PZT Ceramics

  • Tsurumi, Takaaki
    • The Korean Journal of Ceramics
    • /
    • 제7권1호
    • /
    • pp.30-35
    • /
    • 2001
  • The contribution of the non-$180^{\circ}C$ domains to the electric-field-induced strains (EFI-strains) of PZT ceramics was evaluated by an XRD method and by an interferometric method. The XRD intensity ratio of 200 and 002 diffraction peaks of tetragonal PZT was measured under strong electric fields. The amount of the $90^{\circ}$ domain reorientation was evaluated and the strain due to the domain reorientation was calculated. It was confirmed that the EFI-strain of PZT ceramics was equal to the sum of the strain calculated from the d$_33$ constant determined by the resonance-antiresonance method and the strain due to the $90^{\circ}$ domain reorientation. The amount of the $90^{\circ}$domain reorientation has a linear relation with the c/a ratio in the "soft" PZT ceramics. A Mech-Zehnder interferometer was constructed to measure the EFI-strains vs. electric-field curves of PZT ceramics as a function of frequency. The EFI-strain vs. electric-field curve showed a hysteresis due to the effect of the non-$180^{\circ}$ domain reorientation when the applied voltage was high and its frequency was low. The apparent piezoelectric constant increased from the d$_33$ value determined by the resonance-antiresonance method with decreasing frequency. This deviation was attributed to the non-$180^{\circ}$ domain contribution.tribution.

  • PDF

모래-고무 혼합재의 변형율 크기에 따른 거동 특성 (Characteristics of Sand-Rubber mixtures with Strain Level)

  • 이창호;쭝꽝훙;엄용훈;이종섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.90-96
    • /
    • 2008
  • Engineered mixtures composed of rigid sand particles and soft rubber particles are tested to investigate their behavior with strain level. Mixtures are prepared with different volumetric sand fractions (sf) to identify response using small strain resonant column, intermediate strain oedometer, and large strain direct shear tests. The small strain shear modulus and damping ratio are determined with volumetric sand fractions. The asymmetric frequency response curve increases with decreasing sand fraction. Linear responses of shear strain and damping ratio with shear strain are observed at the mixture of sf=0.2. Vertical strain increases with decreasing sand fraction. Mixtures with $04.{\leq}sf{\leq}0.6$ show the transitional stress-deformation behavior from rubber-like to sand-like behavior. The friction angle increases with the sand fraction and no apparent peak strength is observed in mixture without sf=1.0.

  • PDF

수정된 등가선형 해석 기법의 사례를 통한 검증 (Verification of Modified Equivalent Linear Analysis Through Case Study)

  • 정창균;곽동엽;박두희
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.273-276
    • /
    • 2008
  • Equivalent linear method indirectly reflects a variation of shear modulus(G/Gmax) and damping ratio $(\xi)$ by selects mean value of every response analysis. Existing equivalent linear method does not properly consider variation of shear strain along frequencies and uses mean value. Real dynamic soil behavior is affected by shear stiffness and damping ratio. Modified equivalent linear method is developed to consider variation. Modified equivalent linear method can reflects high strain at low frequency and low strain at high frequency by using an easement curve. This study presents propriety of method by case study.

  • PDF

생리학적인 하중 조건에서 소 상완골 연골의 기계적 특성 (In Situ Mechanical Response of Bovine Humeral Head Articular Cartilage in a Physiological Loading Environment)

  • 박성훈
    • 한국정밀공학회지
    • /
    • 제25권1호
    • /
    • pp.145-150
    • /
    • 2008
  • One of the unresolved questions in articular cartilage biomechanics is the magnitude of the dynamic modulus and tissue compressive strains under physiological loading conditions. The objective of this study was to characterize the dynamic modulus and compressive strain magnitudes of bovine articular cartilage at physiological compressive stress level and loading frequency. Four bovine calf shoulder joints (ages 2-4 months) were loaded in Instron testing system under load control, with a load amplitude up to 800 N and loading frequency of 1 Hz, resulting in peak engineering stress amplitude of ${\sim}5.8\;MPa$. The corresponding peak deformation of the articular layer reached ${\sim}27%$ of its thickness. The effective dynamic modulus determined from the slope of stress versus strain curve was ${\sim}23\;MPa$, and the phase angle difference between the applied stress and measured strain which is equivalent to the area of the hystresis loop in the stress-strain response was ${\sim}8.3^{\circ}$. These results are representative of the functional properties of articular cartilage in a physiological loading environment. This study provides novel experimental findings on the physiological strain magnitudes and dynamic modulus achieved in intact articular layers under cyclical loading conditions.

오르막 경사구간에서 중차량 속도감소를 고려한 아스팔트 포장구조체 내부거동 분석 (Estimation of Asphalt Pavement Internal Behavior under Decreasing Truck Speed on Uphill Lanes)

  • 서주원
    • 한국도로학회논문집
    • /
    • 제16권2호
    • /
    • pp.53-59
    • /
    • 2014
  • PURPOSES : This study estimated an asphalt pavement internal behavior under uphill lanes considering reducing speed of heavy truck on uphill slope. METHODS : Truck performance curve which has been adapted to "Korea Highway Capacity Manual" was analyzed. And asphalt pavement internal behaviors were estimated with Multi-layered elastic analysis using KPRP(Korea Pavement Research Program) dynamic modulus prediction equations. RESULTS : As a result, it is shown that when the standard truck drives 2.0 km at a speed of 80 km/h in 8% climbing slope, it's speed reduced to 25.4 km/h, at same time frequency in asphalt layer decrease to 67.2% and it's dynamic modulus degrades to 30.9%. Based on these results, internal behavior as decreasing vehicle speed on uphill lanes were estimated. CONCLUSIONS : From the results of Multi-layered elastic analysis, internal behavior showed that when the standard truck drives 2.0 km at a speed of 80 km/h in 8% slope on uphill lanes, vertical strain was increased to 44.4% at the bottom of surface course, and lateral tensile strain was increased to 20.5% at the bottom of base course.

RH-DMA를 적용한 PET 필름의 장기 점탄성 성능 예측 (Prediction of Long-term Viscoelastic Performance of PET Film Using RH-DMA)

  • 최순호;윤성호
    • Composites Research
    • /
    • 제32권6호
    • /
    • pp.382-387
    • /
    • 2019
  • 상대습도와 온도가 PET 필름의 점탄성 특성에 미치는 영향을 조사하기 위해 RH-DMA를 이용하여 single frequency strain mode 시험, stress relaxation mode 시험, creep 시험을 수행하였다. 상대습도는 10%, 30%, 50%, 70%, 90%를 적용하고 온도는 single frequency strain mode 시험의 경우 30~95℃, stress relaxation mode 시험의 경우 30℃ 와 70℃, creep 시험의 경우 5~95℃를 고려하였다. 연구결과에 따르면 상대습도가 높아지면 저장탄성계수와 손실탄성계수는 낮아지며 손실탄성계수의 최대값은 상대습도의 변화에 큰 영향을 받지 않고 거의 일정해진다. 이완탄성계수는 초기에 급격히 감소하다가 일정한 값을 가지며 높은 온도에서는 상대습도의 변화에 민감해진다. 변형률 회복는 초기에 급격히 증가하며 온도가 높아지면 이완 탄성계수와 마찬가지로 상대습도에 민감하게 변한다. 크리프 컴플라이언스의 증가 정도는 온도가 높아지면 커지며 유리전이온도보다 온도가 높아지면 증가 정도는 더욱 커진다. 시간-온도 중첩법을 통해 구해지는 마스터 선도를 이용하면 상대습도와 온도 등의 운용 조건에서의 장기 성능을 예측할 수 있는 정보를 얻을 수 있다.

Seismic Analysis on Recycled Aggregate Concrete Frame Considering Strain Rate Effect

  • Wang, Changqing;Xiao, Jianzhuang;Sun, Zhenping
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.307-323
    • /
    • 2016
  • The nonlinear behaviors of recycled aggregate concrete (RAC) frame structure are investigated by numerical simulation method with 3-D finite fiber elements. The dynamic characteristics and the seismic performance of the RAC frame structure are analyzed and validated with the shaking table test results. Specifically, the natural frequency and the typical responses (e.g., storey deformation, capacity curve, etc.) from Model 1 (exclusion of strain rate effect) and Model 2 (inclusion of strain rate effect) are analyzed and compared. It is revealed that Model 2 is more likely to provide a better match between the numerical simulation and the shaking table test as key attributes of seismic behaviors of the frame structure are captured by this model. For the purpose to examine how seismic behaviors of the RAC frame structure vary under different strain rates in a real seismic situation, a numerical simulation is performed by varying the strain rate. The storey displacement response and the base shear for the RAC frame structure under different strain rates are investigated and analyzed. It is implied that the structural behavior of the RAC frame structure is significantly influenced by the strain rate effect. On one hand, the storey displacements vary slightly in the trend of decreasing with the increasing strain rate. On the other hand, the base shear of the RAC frame structure under dynamic loading conditions increases with gradually increasing amplitude of the strain rate.