• Title/Summary/Keyword: Frequency-shaped

Search Result 634, Processing Time 0.021 seconds

A Novel Dual-Mode Bandpass Filter Based on a Defected Waveguide Resonator

  • Guan, Xuehui;Fu, Wei;Liu, Haiwen;Ahn, Dal;Lim, Jong-Sik
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.953-956
    • /
    • 2011
  • A novel dual-mode bandpass filter (BPF) using a dual spiral-shaped defected ground waveguide (DGW) resonator is proposed in this letter. The dual-mode characteristic of this filter is achieved by loading a defected T-shaped stub at the midline of the spiral-shaped DGW resonator. Also, non-orthogonal input and output feed-lines are adopted in the filter. Based on the compact DGW structure, a dual-mode BPF with central frequency of 1.5 GHz for the global positioning system is designed, fabricated, and measured. Measured results agree well with the predicted response and verify the proposed methodology.

Optimal Design of Disk Shaped Piezoelectric Actuator and Sensor for Noise Control of Plate Structure (판 구조물의 소음 제어를 위한 압전가진기와 감지기의 최적 설계)

  • 김재환;고범진;최승복;정재천
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.266-271
    • /
    • 1996
  • Optimal design of disk shaped piezoelectric actuator and sensor mounted on the plate structure is studied for the control of noise radiated fro the structure. The sensor signal is returned to the actuator through negative gain. Finite element modelling is used for the plate structure and the disk shaped piezoelectric sensor and actuator. The objective function is the total radiated sound power and the design variables are the locations and sizes of the piezoelectric actuator and sensor. The optimal is performed at the resonance and the off resonance frequency and the results show good noise reduction.

  • PDF

Health monitoring of pedestrian truss bridges using cone-shaped kernel distribution

  • Ahmadi, Hamid Reza;Anvari, Diana
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.699-709
    • /
    • 2018
  • With increasing traffic volumes and rising vehicle traffic, especially in cities, the number of pedestrian bridges has also increased significantly. Like all other structures, pedestrian bridges also suffer damage. In order to increase the safety of pedestrians, it is necessary to identify existing damage and to repair them to ensure the safety of the bridge structures. Owing to the shortcomings of local methods in identifying damage and in order to enhance the reliability of detection and identification of structural faults, signal methods have seen significant development in recent years. In this research, a new methodology, based on cone-shaped kernel distribution with a new damage index, has been used for damage detection in pedestrian truss bridges. To evaluate the proposed method, the numerical models of the Warren Type steel truss and the Arregar steel footbridge were used. Based on the results, the proposed method and damage index identified the damage and determined its location with a high degree of precision. Given the ease of use, the proposed method can be used to identify faults in pedestrian bridges.

Nonlinear dynamic characteristic of sandwich graphene platelet reinforced plates with square honeycomb core

  • Mamoon A.A. Al-Jaafari;Ridha A. Ahmed;Raad M. Fenjan;Nadhim M. Faleh
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.659-667
    • /
    • 2023
  • Nonlinear forced vibration behaviors of sandwich plates having graphene platelets (GPL) based face sheets have been researched in this article. Possessing low weight together with low stiffness, square honeycomb cores are mostly constructed by aluminum. Herein, the square shaped core has been fortified by two skins of GPL-based type in such a way that the skins have uniform and linearly graded GPL dispersions. The square shaped core has the effective material specification according to the relative density concept. The whole formulation has been represented based upon classical plate theory (CPT) while harmonic balance approach is applied for solving the problem and plotting the amplitude-frequency curves. The forced vibration behaviors of such plates are influenced by square-shaped core and the relative density, skin's height and GPL fortification.

A planar half-disk UWB antennas having a notch function (노치 기능을 가지는 반원 형태의 UWB 안테나)

  • Lee, Hyo-K.;Jang, Mi-H.;Lee, Yoon-J.;Park, Jong-K.
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.205-210
    • /
    • 2005
  • In this paper, a planar half-circle shape ultra-wideband(UWB) antenna fed by CPW is designed, fabricated and measured for UWB communications. Within the UWB band(3.1 GHz $\sim$ 10.6 GHz), 5.15 GHz $\sim$ 5.825 GHz frequency band is used by IEEE 802.lla WLAN applications. It may be necessary to notch out this band to avoid interference with IEEE 802.lla WLAN. Therefore, we have proposed three kinds of UWB antennas having a notch function, such as a rectangular slot, a hat-shaped slot, a circle-shaped slot. The notch frequency of the proposed antenna can be adjusted by controlling the slot length or slot width. From the measured results, the proposed antennas show a good gain flatness except the IEEE 802.lla WLAN frequency band and have a reasonable agreement with simulated results.

  • PDF

L-shaped Slot Antenna for WLAN MIMO Application (무선랜 MIMO용 L-형 슬롯 안테나)

  • Song, Won-Ho;Nam, Ju-Yeol;Lee, Ki-Yong;Lee, Young-soon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.344-351
    • /
    • 2016
  • In the present study, a dual-band multiple-input-multiple-output (MIMO) antenna covering WLAN frequency bands of 2.4 GHz (2.4 ~ 2.484 GHz) and 5 GHz (5.15 ~ 5.825 GHz) is newly presented to avoid use of decoupling structure for increasing isolation. The antenna consists of two L-shaped slots with n-shaped slots etched on the floating ground plane surrounded by open ended L-shaped slots which are placed in the left and right corner of PCB respectively. The proposed antenna is designed and fabricated on one side of FR4 substrate with dielectric constant of 4.3, thickness of 1.6 mm, and size of $50{\times}50mm2$. It has been observed that the measured impedance bandwidths ($S_{11}{\leq}-10dB$) are 0.3 GHz (2.28 ~ 2.58 GHz) in 2.4 GHz frequency band and 0.89 GHz (5.11 ~ 6 GHz) in 5 GHz frequency band respectively. In addition, It has been observed that the whole efficiency are more than 80 % in the whole operating frequency band and envelope correlation coefficient of the antenna is less than 0.05 as a very small value in spite of nothing of the decoupling structure.

Design and Manufacture of CPW-fed Two Arc-shaped Antenna for WLAN Applications (WLAN 시스템을 위한 두 개 원호 형태 안테나의 설계와 제작)

  • Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.765-771
    • /
    • 2015
  • In this paper, a dual-band arc-shaped monopole antenna for WLAN(Wireless Local Area Networks) applications. The proposed antenna is based on CPW-fed structure, and composed of two-arc shaped of radiating patch and ground plane. To obtain the optimized parameters, we used the simulator, Ansoft's High Frequency Structure Simulator (HFSS) and found the parameters that greatly effect antenna characteristics. Using optimal parameters, the antenna is fabricated. The numerical and experiment results demonstrated that the propnosed antenna satisfied the -10 dB impedance bandwidth requirement while simultaneously covering the WLAN bands. And measured results of gain and radiation patterns characteristics displayed determined for opeating bands.

Buffeting response of a free-standing bridge pylon in a trumpet-shaped mountain pass

  • Li, Jiawu;Shen, Zhengfeng;Xing, Song;Gao, Guangzhong
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.85-97
    • /
    • 2020
  • The accurate estimation of the buffeting response of a bridge pylon is related to the quality of the bridge construction. To evaluate the influence of wind field characteristics on the buffeting response of a pylon in a trumpet-shaped mountain pass, this paper deduced a multimodal coupled buffeting frequency domain calculation method for a variable-section bridge tower under the twisted wind profile condition based on quasi-steady theory. Through the long-term measurement of the wind field of the trumpet-shaped mountain pass, the wind characteristics were studied systematically. The effects of the wind characteristics, wind yaw angles, mean wind speeds, and wind profiles on the buffeting response were discussed. The results show that the mean wind characteristics are affected by the terrain and that the wind profile is severely twisted. The optimal fit distribution of the monthly and annual maximum wind speeds is the log-logistic distribution, and the generalized extreme value I distribution may underestimate the return wind speed. The design wind characteristics will overestimate the buffeting response of the pylon. The buffeting response of the pylon is obviously affected by the wind yaw angle and mean wind speed. To accurately estimate the buffeting response of the pylon in an actual construction, it is necessary to consider the twisted effect of the wind profile.

Compact Dual-Band Half-Ring-Shaped Bent Slot Antenna for WLAN and WiMAX Applications

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.199-204
    • /
    • 2017
  • A compact dual-band half-ring-shaped (HRS) bent slot antenna fed by a coplanar waveguide for wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) applications is presented. The antenna consists of two HRS slots with different lengths and widths. The two HRS slots are connected through an arc-shaped slit, and the upper HRS slot is bent in order to reduce the size of the antenna. The optimized dual-band HRS bent slot antenna operating in the 2.45 GHz WLAN and 3.5 GHz WiMAX bands is fabricated on an FR4 substrate with dimensions of 30 mm by 30 mm. The slot length of the proposed dual-band slot antenna is reduced by 35%, compared to a conventional dual-band rectangular slot antenna. Experimental results show that the proposed antenna operates in the frequency bands of 2.40-2.49 GHz and 3.39-3.72 GHz for a voltage standing wave ratio of less than 2, and measured gain is larger than 1.4 dBi in the two bands.

Development of the NDIF Method Using a Sub-domain Approach for Extracting Highly Accurate Natural Frequencies of Arbitrarily Shaped Plates (임의 형상 평판의 고정밀도 고유진동수 추출을 위한 분할영역법 기반 NDIF법 개발)

  • Kang, S.W.;Yon, J.I.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.830-836
    • /
    • 2012
  • The NDIF method based on a sub-domain technique is introduced to extract highly accurate natural frequencies of arbitrarily shaped plates with the simply-supported boundary condition. The NDIF method, which was developed by the authors for the eigen-mode analysis of arbitrarily shaped plates with various boundary conditions, has the feature that it yields highly accurate natural frequencies thanks to its effective theoretical formulation, compared with other analytical methods or numerical methods(FEM and BEM). However, the NDIF method has the weak point that it can be applicable for only convex plates. It was revealed that the NDIF method offers very inaccurate natural frequencies or no solution for concave cavities. To overcome the weak point, the paper proposes the sub-domain method of dividing a concave plate into several convex domains. Finally, the validity of the proposed method is verified in various case studies, which indicate that natural frequencies obtained by the proposed method are very accurate compared to the exact method and FEM(ANSYS).