• Title/Summary/Keyword: Frequency gain

Search Result 2,411, Processing Time 0.031 seconds

Active Vibration Control of Clamped Beams using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 양단지지보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.264-270
    • /
    • 2011
  • This paper reports a filtered velocity feedback (FVF) controller, which is an alternative to direct velocity feedback (DVFB) controller. The instability problems due to high frequency response under DVFB can be alleviated by the suggested FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The FVF controller and the dynamics of clamped beams under forces and moments are first formulated The effects of the design parameters (cut-off frequency, gain, and damping ratio) on the stability and the performance are then investigated. The cut-off frequency should be selected not to affect the system stability. The magnitude of the open loop transfer function (OLTF) at the cut-off frequency should be small. As increasing the gain of the FVF controller, the magnitude of the OLTF is increased, so that the closed loop response can be reduced more. The enhancement of the OLTF at the cut-off frequency is reduced but the phase behavior around the cut-off frequency is distorted, as the damping ratio is increased The control performance is finally estimated for the clamped beam. More than 10dB reductions in velocity response can be achieved at the modal frequencies from the first to eighth modes.

  • PDF

Correction of resonance frequency for RF amplifiers based on superconducting quantum interference device

  • Lee, Y.H.;Yu, K.K.;Kim, J.M.;Lee, S.K.;Chong, Y.;Oh, S.J.;Semertzidis, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.6-10
    • /
    • 2018
  • Low-noise amplifiers in the radio-frequency (RF) band based on the direct current (DC) superconducting quantum interference device (SQUID) can be used for quantum-limited measurements in precision physics experiments. For the prediction of peak-gain frequency of these amplifiers, we need a reliable design formula for the resonance frequency of the microstrip circuit. We improved the formula for the resonance frequency, determined by parameters of the DC SQUID and the input coil, and compared the design values with experimental values. The proposed formula showed much accurate results than the conventional formula. Minor deviation of the experimental results from the theory can be corrected by using the measured geometrical parameters of the input coil line.

K-band MMIC Oscillator Design Using the PHEMT (PHEMT소자를 이용한 K-band MMIC 발진 설계)

  • 이지형;채연식;조희철;윤용순;이진구
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.88-91
    • /
    • 2000
  • An MMIC oscillator operating at the 24.55 GHz has been designed using 0.2 ${\mu}{\textrm}{m}$AlGaAs/InGaAs/GaAs Pseudomorphic HEMT technology. The active device used in the oscillator design has a 0.2 ${\mu}{\textrm}{m}$ gate length PHEMT with 4$\times$80 ${\mu}{\textrm}{m}$ gate width. We obtained 4.08 dB of S$_{21}$ gain and 317 mS/mm of transconductance, and extrapolated unit current gain cut-off frequency (f$_{T}$) and maximum oscillation frequency (fmax) were 62 GHz and 120 GHz, respectively. The circuit are based on a series feedback and negative resistance topology. Microstrip line open stub is used to terminating. The oscillator circuits has designed for delivering maximum power to load and conjugated matching. The simulated small signal negative resistance was 50 Ω. We obtained 1.002 of loop gain and 0.0005$^{\circ}$angle from the simulation by HP libra 6.1. The layout for oscillator is 1.2$\times$1.8 $\textrm{mm}^2$.>.

  • PDF

Design of a Wideband Antipodal Vivaldi Antenna with an Asymmetric Parasitic Patch

  • Bang, Jihoon;Lee, Juneseok;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.29-34
    • /
    • 2018
  • An antipodal Vivaldi antenna with a compact parasitic patch to overcome radiation performance degradations in the high-frequency band is proposed. For this purpose, a double asymmetric trapezoidal parasitic patch is designed and added to the aperture of an antipodal Vivaldi antenna. The patch is designed to efficiently focus the beam toward the end-fire direction at high frequencies by utilizing field coupling between the main radiating patch and the inserted parasitic patch. As a result, this technique considerably improves the gain and stability of radiation patterns at high frequencies. The proposed antenna has a peak gain greater than 9 dBi over the frequency range of 6-26.5 GHz.

Voltage Gain Characteristics of Piezoelectric Transformer Operation in Second Thickness Extensional Vibration Mode (2차 두께방향 지동모드로 동작되는 압전트랜스포머의 Voltage Gain 특성)

  • 김성진;이수호;류주현;임인호;홍재일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.855-860
    • /
    • 1998
  • This paper presents a new structure for a piezoelectric transformer, operating in thickness extensional vibration mode. Modified $PbTiO_3$ family ceramics were used for the piezoelectric transformer, because it was a material with large anisotropy between elecromechanical coupling factors $K_t$ and $K_p$ . The size of piezoelectric transformer was 20mn long, 20mm wide and 3.1mm thick. The second harmonic resonant frequency of thickness extensional vibration mode was 0.72MHz at loading resistance 100[$\omega$], And Voltage gin of piezoelectric ceramics showed 0.53 at resonant frequency of sencond thickness extensional vibration mode.

  • PDF

Characteristics of Step-Down Transformer in PZT Piezoelectric Ceramics (PZT계 압전 세라믹 변압기의 감압특성)

  • 김오수;이준형;손정호;남효덕;조상희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.11
    • /
    • pp.885-891
    • /
    • 2001
  • Ring/dot-type step-down piezoelectric transformer was manufactured by using Pb[(Mn$\sub$1/3/Sb$\sub$2/3)$\sub$0.05/Zr$\sub$0.475/Ti$\sub$0.475/]O$_3$ ceramics, which have excellent high-power piezoelectric properties. The characteristics of step-down piezoelectric transformer as a function of load resistance at output terminal was examined. Voltage gain was greatly dependent on drive frequency and load resistance, and showed maximum voltage gain at the resonance frequency. The output voltage was linearly increased as the input voltage increased. Voltage gain of the step-down piezoelectric transformer with respect to input voltage was very stable when the load resistance was in the range of 50-500 $\Omega$ .

  • PDF

A Study for the Available Adjustment Range of Gain at P, PI Control for the Retarded Processes (시간지연을 갖는 제어대상에 대한 P, PI 제어의 유효 게인 조정 범위에 관한 연구)

  • 강인철;최순만;최재성
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.207-212
    • /
    • 2001
  • In this paper, a method to be able to decide the possible maximum gain of P, PI control for the retarded processes under stable condition is proposed. At first, adjustable parameter set causing stability limit are obtained based on the frequency domain condition which makes the roots of transfer function locate on the $j\omega$ axis. And the cut-in frequency $\omega{_p}$ to bring the parameter set to P control from PI control is derived by an equation with 2 parameters L and $T_m$ given, then $\omega{_p}$ is used to compute the maximum gain with stable condition. For the calculation, the controlled process of first order system with time delay element is introduced and all parameters are presumed to be time invariant.

  • PDF

A Design of Wideband Frequency Synthesizer for Mobile-DTV Applications (Mobile-DTV 응용을 위한 광대역 주파수 합성기의 설계)

  • Moon, Je-Cheol;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.40-49
    • /
    • 2008
  • A Frequency synthesizer for mobile-DTV applications is implemented using $0.18{\mu}m$ CMOS process with 1.8V supply. PMOS transistors are chosen for VCO core to reduce phase noise. The measurement result of VCO frequency range is 800MHz-1.67GHz using switchable inductors, capacitors and varactors. We use varactor bias technique for the improvement of VCO gain linearity, and the number of varactor biasing are minimized as two. VCO gain deterioration is also improved by using the varactor switching technique. The VCO gain and interval of VCO gain are maintained as low and improved using the VCO frequency calibration block. The sigma-delta modulator for fractional divider is designed by the co-simualtion method for accuracy and efficiency improvement. The VCO, PFD, CP and LF are verified by Cadence Spectre, and the sigma-delta modulator is simulated using Matlab Simulink, ModelSim and HSPICE. The power consumption of the frequency synthesizer is 18mW, and the VCO has 52.1% tuning range according to the VCO maximum output frequency. The VCO phase noise is lower than -100dBc/Hz at 1MHz at 1MHz offset for 1GHz, 1.5GHz, and 2GHz output frequencies.

Technique for Simulating Gain Tuning using SolidWorks® and LabVIEW® for a Six-Axis Articulated Robot (SolidWorks®와 LabVIEW®를 연동한 6축 수직 다관절 로봇의 게인 튜닝 연구)

  • Jung, C.D.;Chung, W.J.;Kim, M.S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.75-82
    • /
    • 2014
  • For accurate gain tuning of the lab-manufactured six-axis articulated robot RS2 with less noise, in this study, a program routine using dynamic signal analyzer, which is a realization of a controller design algorithm in the frequency domain, is programmed using LabVIEW$^{(R)}$. The contribution of this paper is the proposal of a simulation technique based on SolidWorks$^{(R)}$ and LabVIEW$^{(R)}$ for the gain tuning of a six-axis articulated robot. To realize the simulation, the LabVIEW$^{(R)}$ program used for experimental gain tuning is incorporated in to SolidWorks$^{(R)}$. A comparison shows that the results of simulation-based gain tuning and experimental gain tuning are almost the same within a 5% error bound. On the basis of the comparison, it can be suggested that the simulation-based technique for gain tuning can be applied instead of experimental gain tuning to a six-axis articulated robot by interlocking SolidWorks$^{(R)}$ and LabVIEW$^{(R)}$.

A Study of the Gain Margin in Accordance with the PSS Inputs (PSS 입력신호에 따른 이득여유 연구)

  • Kim, Dong-Joon;Moon, Young-Hwan;Kim, Tae-Kyun;Shin, Jeong-Hoon;Kim, Yong-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1060-1062
    • /
    • 1999
  • This paper proposes a guideline of choosing the optimum stabilizer input considering the gain margin of power system stabilizer between the optimum stabilizer gain and the allowable maximum stabilizer gain in accordance with the five inputs, such as generator shaft speed, bus frequency, electrical power, accelerating power and bus terminal voltage. The local mode damping and exciter mode damping are considered with increasing the stabilizer gain to determine each gain margin of the inputs.

  • PDF