• Title/Summary/Keyword: Frequency feature analysis

Search Result 366, Processing Time 0.031 seconds

Term Frequency-Inverse Document Frequency (TF-IDF) Technique Using Principal Component Analysis (PCA) with Naive Bayes Classification

  • J.Uma;K.Prabha
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.113-118
    • /
    • 2024
  • Pursuance Sentiment Analysis on Twitter is difficult then performance it's used for great review. The present be for the reason to the tweet is extremely small with mostly contain slang, emoticon, and hash tag with other tweet words. A feature extraction stands every technique concerning structure and aspect point beginning particular tweets. The subdivision in a aspect vector is an integer that has a commitment on ascribing a supposition class to a tweet. The cycle of feature extraction is to eradicate the exact quality to get better the accurateness of the classifications models. In this manuscript we proposed Term Frequency-Inverse Document Frequency (TF-IDF) method is to secure Principal Component Analysis (PCA) with Naïve Bayes Classifiers. As the classifications process, the work proposed can produce different aspects from wildly valued feature commencing a Twitter dataset.

The Classification and Frequency Analysis in Radial Pulse (맥파의 인식상의 분류와 주파수 해석)

  • Kil, S.K.;Han, S.H.;Kwon, O.S.;Park, S.H.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.263-264
    • /
    • 1998
  • In this paper, we present the result of feature points recognition and classification of radial pulse by the shape of pulse wave. And we analyze radial pulse in frequency domain. The recognition algorithm use the method which runs in parallel with both the data of ECG and differential pulse simultaneously to recognize the feature points. Also fie specified 3-time elements of pulse wave as main parameters for diagnosis and measured them by execution of algorithm, then we classify the shape of radial pulse by existence and position of feature points. lastly we execute frequency analysis on the feature points and get the power spectrum of radial pulse.

  • PDF

Fault Detection and Classification of Faulty Induction Motors using Z-index and Frequency Analysis (Z-index와 주파수 분석을 이용한 유도전동기 고장진단과 분류)

  • Lee, Sang-Hyuk
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.64-70
    • /
    • 2005
  • In this literature, fault detection and classification of faulty induction motors are carried out through Z-index and frequency analysis. Above frequency analysis refer Fourier transformation and Wavelet transformation. Z-index is defined as the similar form of energy function, also the faulty and healthy conditions are classified through Z-index. For the detection and classification feature extraction for the fault detection of an induction motor is carried out using the information from stator current. Fourier and Wavelet transforms are applied to detect the characteristics under the healthy and various faulty conditions. We can obtain feature vectors from two transformations, and the results illustrate that the feature vectors are complementary each other.

Features for Figure Speech Recognition in Noise Environment (잡음환경에서의 숫자음 인식을 위한 특징파라메타)

  • Lee, Jae-Ki;Koh, Si-Young;Lee, Kwang-Suk;Hur, Kang-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.473-476
    • /
    • 2005
  • This paper is proposed a robust various feature parameters in noise. Feature parameter MFCC(Mel Frequency Cepstral Coefficient) used in conventional speech recognition shows good performance. But, parameter transformed feature space that uses PCA(Principal Component Analysis)and ICA(Independent Component Analysis) that is algorithm transformed parameter MFCC's feature space that use in old for more robust performance in noise is compared with the conventional parameter MFCC's performance. The result shows more superior performance than parameter and MFCC that feature parameter transformed by the result ICA is transformed by PCA.

  • PDF

Speech Feature Extraction for Isolated Word in Frequency Domain (주파수 영역에서의 고립단어에 대한 음성 특징 추출)

  • 조영훈;박은명;강홍석;박원배
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.81-84
    • /
    • 2000
  • In this paper, a new technology for extracting the feature of the speech signal of an isolated word by the analysis on the frequency domain is proposed. This technology can be applied efficiently for the limited speech domain. In order to extract the feature of speech signal, the number of peaks is calculated and the value of the frequency for a peak is used. Then the difference between the maximum peak and the second peak is also considered to identify the meanings among the words in the limited domain. By implementing this process hierarchically, the feature of speech signal can be extracted more quickly.

  • PDF

Time-Frequency Analysis of Electrohysterogram for Classification of Term and Preterm Birth

  • Ryu, Jiwoo;Park, Cheolsoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • In this paper, a novel method for the classification of term and preterm birth is proposed based on time-frequency analysis of electrohysterogram (EHG) using multivariate empirical mode decomposition (MEMD). EHG is a promising study for preterm birth prediction, because it is low-cost and accurate compared to other preterm birth prediction methods, such as tocodynamometry (TOCO). Previous studies on preterm birth prediction applied prefilterings based on Fourier analysis of an EHG, followed by feature extraction and classification, even though Fourier analysis is suboptimal to biomedical signals, such as EHG, because of its nonlinearity and nonstationarity. Therefore, the proposed method applies prefiltering based on MEMD instead of Fourier-based prefilters before extracting the sample entropy feature and classifying the term and preterm birth groups. For the evaluation, the Physionet term-preterm EHG database was used where the proposed method and Fourier prefiltering-based method were adopted for comparative study. The result showed that the area under curve (AUC) of the receiver operating characteristic (ROC) was increased by 0.0351 when MEMD was used instead of the Fourier-based prefilter.

Evaluation of Frequency Warping Based Features and Spectro-Temporal Features for Speaker Recognition (화자인식을 위한 주파수 워핑 기반 특징 및 주파수-시간 특징 평가)

  • Choi, Young Ho;Ban, Sung Min;Kim, Kyung-Wha;Kim, Hyung Soon
    • Phonetics and Speech Sciences
    • /
    • v.7 no.1
    • /
    • pp.3-10
    • /
    • 2015
  • In this paper, different frequency scales in cepstral feature extraction are evaluated for the text-independent speaker recognition. To this end, mel-frequency cepstral coefficients (MFCCs), linear frequency cepstral coefficients (LFCCs), and bilinear warped frequency cepstral coefficients (BWFCCs) are applied to the speaker recognition experiment. In addition, the spectro-temporal features extracted by the cepstral-time matrix (CTM) are examined as an alternative to the delta and delta-delta features. Experiments on the NIST speaker recognition evaluation (SRE) 2004 task are carried out using the Gaussian mixture model-universal background model (GMM-UBM) method and the joint factor analysis (JFA) method, both based on the ALIZE 3.0 toolkit. Experimental results using both the methods show that BWFCC with appropriate warping factor yields better performance than MFCC and LFCC. It is also shown that the feature set including the spectro-temporal information based on the CTM outperforms the conventional feature set including the delta and delta-delta features.

Seabed Sediment Feature Extraction Algorithm using Attenuation Coefficient Variation According to Frequency (주파수에 따른 감쇠계수 변화량을 이용한 해저 퇴적물 특징 추출 알고리즘)

  • Lee, Kibae;Kim, Juho;Lee, Chong Hyun;Bae, Jinho;Lee, Jaeil;Cho, Jung Hong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.111-120
    • /
    • 2017
  • In this paper, we propose novel feature extraction algorithm for classification of seabed sediment. In previous researches, acoustic reflection coefficient has been used to classify seabed sediments, which is constant in terms of frequency. However, attenuation of seabed sediment is a function of frequency and is highly influenced by sediment types in general. Hence, we developed a feature vector by using attenuation variation with respect to frequency. The attenuation variation is obtained by using reflected signal from the second sediment layer, which is generated by broadband chirp. The proposed feature vector has advantage in number of dimensions to classify the seabed sediment over the classical scalar feature (reflection coefficient). To compare the proposed feature with the classical scalar feature, dimension of proposed feature vector is reduced by using linear discriminant analysis (LDA). Synthesised acoustic amplitudes reflected by seabed sediments are generated by using Biot model and the performance of proposed feature is evaluated by using Fisher scoring and classification accuracy computed by maximum likelihood decision (MLD). As a result, the proposed feature shows higher discrimination performance and more robustness against measurement errors than that of classical feature.

Performance Comparison of Deep Feature Based Speaker Verification Systems (깊은 신경망 특징 기반 화자 검증 시스템의 성능 비교)

  • Kim, Dae Hyun;Seong, Woo Kyeong;Kim, Hong Kook
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.9-16
    • /
    • 2015
  • In this paper, several experiments are performed according to deep neural network (DNN) based features for the performance comparison of speaker verification (SV) systems. To this end, input features for a DNN, such as mel-frequency cepstral coefficient (MFCC), linear-frequency cepstral coefficient (LFCC), and perceptual linear prediction (PLP), are first compared in a view of the SV performance. After that, the effect of a DNN training method and a structure of hidden layers of DNNs on the SV performance is investigated depending on the type of features. The performance of an SV system is then evaluated on the basis of I-vector or probabilistic linear discriminant analysis (PLDA) scoring method. It is shown from SV experiments that a tandem feature of DNN bottleneck feature and MFCC feature gives the best performance when DNNs are configured using a rectangular type of hidden layers and trained with a supervised training method.

A Study on Observation Characteristics by Sex shown in the process of Visual Appreciation of Space (공간의 시각적 이해과정에 나타난 성별 주시특성에 관한 연구)

  • Kim, Jong-Ha
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.5
    • /
    • pp.152-161
    • /
    • 2013
  • This study is about the visual appreciation by sex with the analysis of time range of observing data which was got through observation experiment with the space of lobby in hospitals. The observation data of the subjects who observed the space include the frequency and time, through which the process of visual appreciation could be evaluated with the definition of the frequency and the time of observation. First, the fact that men had higher frequency of observation than women means the former had more movement than the latter, and another fact of their fewer times can be understood as the time of their staying was shorter. That is, even though the men had more movements of sight, they showed the feature of staying shorter. Second, the rate high and low of observation frequency and times made it possible for observation characteristics to be defined as 'intensive search' 'active search' 'fixed concentration' and 'search wandering.' The definition of understanding this process of visual appreciation can be available for a frame of effective analysis of observation characteristics according to the passage of time. Third, the intense search is the case of 'high frequency' having the feature of high visual appreciation owing to the active visual actions for acquiring information. Men were found to have more intense search which decreased gradually as time passed, while women showed the feature of many times of intense search. Fourth, it was found that with many observation data in a certain range of time the subjects had fixed concentration, where women were found to have repetitive fixed concentration along with the change of observation time while men were seen to have more observation tendency for fixed concentration. Fifth, at the cross tabulation of frequency and times, men had the feature of dispersed visual appreciation while women had more distinction between fixation and movement, which revealed that there is surely the difference between men and women in the process of visual appreciation.