• Title/Summary/Keyword: Frequency characteristic

Search Result 2,982, Processing Time 0.034 seconds

Multidisciplinary Design Optimization for Acoustic Characteristics of a Speaker Diaphragm (스피커 진동판의 음향특성 다분야통합최적설계)

  • Kim, Sung-Kuk;Lee, Tae-Hee;Lee, Surk-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.763-766
    • /
    • 2004
  • Recently, various acoustic artifacts that contains speaker have been produced such as cellular phone. Speaker consists of diaphragm generating sound and coil vibrating diaphragm. Generally, good speaker means that it has a wide frequency range, high output power rate to input power and flat sound pressure level in specified frequency range. Acoustic characteristic was estimated through the experiment and computer simulation, or sound power was controlled with acoustic sensitivity in a natural frequency range fer last decade. However, the flatness of sound pressure level has not been considered to enhance the sound quality of a speaker. Tn this study, a method for speaker design is proposed for a good acoustic characteristic, which is flatness of SPL(sound pressure level) and wideness between the first and second natural frequency. SYSNOISE is used fer acoustic analysis and ANSYS is used for harmonic response analysis and modal analysis. Optimization for acoustic characteristics of a speaker diaphragm is performed using ModelCenter. All analyses are done within a frequency domain. And we confirm that the experimental and computational simulations have similar trend.

  • PDF

Performance Analysis of Frequency Synchronization for HDR-WPAN System (HDR-WPAN 시스템을 위한 주파수 동기 성능분석)

  • Park, Ji-Woo;Kang, Hee-Gok;Kim, Jae-Young;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.163-168
    • /
    • 2004
  • In this paper, we propose a frequency synchronization algorithm using characteristic of CAZAC sequence for HDR-WPAN and analyze the performance by signal constellation and EVM(error vector magnitude). The proposed frequency offset technique estimated each sample phase error of two sequences among 12 CAZAC sequences which have excellent autocorrelated characteristic. Estimated phase error is multiplied to each sample of next sequence for compensating the frequency offset. The remaining frequency offset after compensating it with two sequences has maximum 0.002 offsest ranges at each sample. The computer simulation proved that the permission of EVM value had satisfied in the case of DQPSK at 20[dB].

  • PDF

Damping and frequency of twin-cables with a cross-link and a viscous damper

  • Zhou, H.J.;Yang, X.;Peng, Y.R.;Zhou, R.;Sun, L.M.;Xing, F.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.669-682
    • /
    • 2019
  • Vibration mitigation of cables or hangers is one of the crucial problems for cable supported bridges. Previous research focused on the behaviors of cable with dampers or crossties, which could help engineering community apply these mitigation devices more efficiently. However, less studies are available for hybrid applied cross-ties and dampers, especially lack of both analytical and experimental verifications. This paper studied damping and frequency of two parallel identical cables with a connection cross-tie and an attached damper. The characteristic equation of system was derived based on transfer matrix method. The complex characteristic equation was numerically solved to find the solutions. Effects of non-dimensional spring stiffness and location on the maximum cable damping, the corresponding optimum damper constant and the corresponding frequency of lower vibration mode were further addressed. System with twin small-scale cables with a cross-link and a viscous damper were tested. The damping and frequency from the test were very close to the analytical ones. The two branches of solutions: in-phase modes and the out-of-phase modes, were identified; and the two branches of solutions were different for damping and frequency behaviors.

A Characteristic Analysis of Single-Power-Stage High Frequency Resonant AC-DC Converter with High Power Factor (고역률 단일 전력단 고주파 공진 AC-DC 컨버터의 특성해석)

  • 남승식;원재선;황계호;오경섭;박재욱;김동희;오승훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.372-380
    • /
    • 2004
  • This paper proposes a single-power-stage high frequency resonant AC-DC converter with high power factor using ZVS(Zero Voltage Switching), and integrates a conventional converter with two stage into single stage converter. Input power factor is possible to be improved as a high power factor because inductor for power factor correction(PFC) is connected in input and converter is operated in discontinued current mode(DCM) with constant duty cycle and variable switching frequency. The conventional converter with two stage need to add a switch in order to control a power factor, but single stage converter have a advantage that system is simple and cost is down, confidence is improved, etc. This paper described a operation principle and characteristic analysis for single stage AC-DC converter with high power factor and have evaluated characteristic values by using normalized parameter. We make a experimental equipment using MOSFET as a switching device on the basis of characteristic values obtained from characteristic evaluations and we conform a rightfulness of theoretical analysis by comparing theoretical waveforms and experimental waveforms.

mechanism of Equivalent Power Distribution in Parallel Connected ICP for Large Area Processing

  • Lee, Jin-Won;Bae, In-Sik;An, Sang-Hyeok;Jang, Hong-Yeong;Yu, Sin-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.510-510
    • /
    • 2012
  • 반도체, 디스플레이, 태양광 등의 공정에서 사용되는 웨이퍼의 크기가 증가하고, 생산률이 플라즈마의 밀도에 비례한다는 연구 결과가 발표되면서 대면적 고밀도 플라즈마 소스 개발에 대한 연구가 활발히 진행되고 있다. 특히, ECR, ICP, Helicon plasma 등 고밀도 플라즈마 소스에 대한 관심이 높아지고 있다. 이에 따라, 여러 개의 ICP를 결합한 multiple ICP를 이용해 대면적 고밀도 플라즈마 소스 개발을 진행했다. Multiple ICP의 경우 각 ICP 소스에 같은 power (current)를 공급해야만 균일한 플라즈마 방전이 발생되어 균일도를 확보 할 수 있다. Current controller 같은 추가적인 장비를 설치하지 않고, power를 분배하는 transmission line을 coaxial 형태로 설계하고 같은 길이로 병렬 연결함으로써 각각의 ICP소스에서 균일한 플라즈마를 방전시킬 수 있었다. Power generator에서 보는 각 ICP의 total impedance는 각 ICP 소스의 impedance와 coaxial 형태의 transmission line의 characteristic impedance, frequency, 길이의 함수로 구할 수 있고, 이 total impedance가 일정하기 때문에 current가 균등하게 분배되어 각 ICP소스에 균등한 power 분배가 가능한 것이다. 실질적으로 ICP 소스의 impedance는 플라즈마 방전 유무에 따라 변화하기 때문에 일정하게 유지하는 것은 어렵다. Transmission line의 characteristic을 사용함으로써 ICP의 impedance의 변화에 상관없이 Total impedance를 일정하게 유지시킴으로써 균등한 power 분배가 가능하다는 것을 연구했다. Frequency는 13,56MHz, characteristic impedance를 $50{\Omega}$ (coaxial cable)으로 고정하고, ICP 소스의 플라즈마 방전 유무/antenna turn/소스 위치에 따른 total impedance를 transmission line의 길이에 따라 측정하고, 이를 이론값, 그래프와 비교하였다. 특정 length에서 플라즈마 방전 유무(ICP의 impedance 변화)와 상관없이 비교적 일정한 total impedance를 유지하는 것을 확인 했다. 이것은 특정 길이를 갖는 coaxial형태의 transmission line를 연결하면, total impedance는 플라즈마 방전 유무로 발생하는 ICP의 impedance 변화와 상관없이 일정하게 유지되어 각 ICP소스에 균등한 파워 분배가 가능하다는 것을 보여준 결과이다. 이것을 토대로 frequency에 따라(또는 characteristic impedance에 따라) 균등한 파워 분배가 가능한 coaxial 형태 transmission line의 특정 길이를 구할 수 있고, 대면적 소스에서 균등한 파워 분배를 위한 병렬연결에 적용할 수 있을 것이다.

  • PDF

Fiber Orientation Effects on the Fracture Process and Acoustic Emission Characteristics of Composite Laminates

  • Woo, Sung-Choong;Kim, Jung-Heun;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.451-458
    • /
    • 2005
  • The effects of fiber orientation on acoustic emission(AE) characteristics have been studied for various composite laminates. Reflection and transmission optical microscopy were used to investigate the damage zone of specimens. AE signals were classified through short time Fourier transform(STFT) as different types: AE signals with a high intensity and high frequency band were due to fiber fracture, while weak AE signals with a low frequency band were due to matrix cracking and/or interfacial cracking. Characteristic feature in the rate of hit-events having high amplitudes showed a procedure of fiber breakages, which expressed the characteristic fracture processes of notched fiber-reinforced plastics with different fiber orientations. As a consequence, the behavior of fracture in the continuous composite laminates could be monitored through nondestructive evaluation(NDE) using the AE technique.

A Study on the Shape Design of Micro Speaker Diaphragm (마이크로 스피커 다이아프램의 형상설계에 관한 연구)

  • Hong, Do-Kwa;Woo, Byung-Chul;Kim, Dong-Young;Ahn, Chan-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.775-780
    • /
    • 2005
  • This study uses a characteristic function to explain correlations between the objective function and design variables. Analysis of means and table of orthogonal array were carried out. The change of shape of diaphragm, thickness of diaphragm and voice coil weight based on the table of orthogonal array Is made. Therefore this study carried to decide design variables for minimizing 1st natural frequency and maximizing 2nd natural frequency of diaphragm using design of experiments and characteristic function with constraints. we showed improved design variables.

THE STUDY OF AERO-ACOUSTICS CHARACTERISTICS BY THE BOUNDARY CONDITIONS OF HIGH ORDER SCHEME (고해상도 수치기법의 경계조건에 따른 공력음향 특성에 관한 연구)

  • Lee, S.S.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.25-32
    • /
    • 2009
  • The present paper focuses on the analysis of aero-acoustics characteristic by appling different four boundary conditions. The high-order and high-resolution numerical schemes are used for discrete accurate computation of compressible flow. The four boundary conditions include extrapolation, characteristic boundary condition, zonal characteristic boundary condition. These boundary conditions are applied to the computation of two dimensional circular cylinder flows with Mach number of 0.3 and Reynolds number of 400. The computation results are validated against measurement data and other computation results for the Strouhal frequency of vortex shedding, the mean drag coefficient and root-mean-square lift for the unsteady periodic flow regime. The characteristics of secondary frequency is predicted by three kinds of boundary conditions.

A Study on the frequency characteristic of ZnO Piezoelectric transducers (ZnO 압전변환기의 주파수특성에 관한 연구)

  • 정규원;이종덕;정광천;박상만;송준태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.189-192
    • /
    • 1996
  • In this paper ZnO Piezoelectric transducers were fabricated as follows, counter electrode (pt 99.9%) was deposited on the sapphire substrates by DC sputter method, and then piezoelectric layer (ZnO 99.999%) was deposited on the counter electrode according to the sputtering parameters, and then top electrode (pt 99.9%) was deposited on the piezoelectric layer by Electron Beam Gun Evaporator. Structural characteristic of deposited ZnO thin film was measured by XRD, SEM. Also, Frequency characteristic of ZnO transducer was analyzed theoretically and practically for input frequencies.

  • PDF

Optimal Design of Micro Actuator Plate Spring Considering Vibration Characteristic (진동 특성을 고려한 마이크로 엑추에이터 판 스프링의 최적설계)

  • 이종진;이호철;유정훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.220-225
    • /
    • 2003
  • Recent issue of optical actuator is applying to mobile device. It leads actuator to become smaller than conventional type. This paper proposes the design of micro actuator plate spring and analysis of its vibration characteristic. Considering natural frequency of spindle motor, 1st and 2nd eigenfrequency of micro actuator must avoid its natural frequency. First, magnetic circuit is designed by using fine pattern coil and magnetic force is acquired by simulation program. Then, concept design is achieved by topology optimization. From concept design, micro actuator plate spring is embodied through DOE(design of experiment). Finally, considering vibration characteristic simultaneously, optimal plate spring design is determined by RSM(response surface method).

  • PDF