• Title/Summary/Keyword: Frequency channel

Search Result 2,803, Processing Time 0.035 seconds

Analysis of IEEE 802.11a wireless LAN system considering frequency offset compensation and channel estimation in the indoor multipath channel (실내 다중경로 채널에서 주파수 오프셋 보상 및 채널 추정을 고려한 IEEE 802.11a 무선 LAN 시스템의 성능 분석)

  • 오동진;김철성
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.9
    • /
    • pp.47-54
    • /
    • 2004
  • The previous works for WLAN system based on OFDM is mainly individual study for independent frequency offset or symbol synchronization. In this paper, the performance of IEEE 802.11a WLAN(Wireless Local Area Network) system in the realistic indoor multipath channel models is analyzed with frequency offset compensation and channel estimation methods. For the performance analysis of the WLAN system indoor Rayleigh multipath channels are adopted, and the BER(Bit Error Rate) of WLAN system is calculated with y2 code-rate 16-QAM based on standard specification. From the simulation results, the difference of required Eb/No for BER of 10-3 is 1-2dB between the channel estimation and frequency offset compensation, and perfect channel estimation and no frequency offset.

Signal processing algorithm for converting variable bandwidth in the multiple channel systems (다중채널 시스템에서 가변 대역폭 절환을 위한 신호처리 알고리즘)

  • Yoo, Jae-Ho;Kim, Hyeon-Su;Choi, Dong-Hyun;Chung, Jae-Hak
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.32-37
    • /
    • 2010
  • The algorithm of multiple channel signal processing requires the flexibility of variable frequency band, efficient allocation of transmission power, and flexible frequency band reallocation to satisfy various service types which requires different transmission rates and frequency band. There are three methods including per-channel approach, multiple tree approach, and block approach performing frequency band reallocation method by channelization and dechannelization in the multiple-channel signal. This paper proposes an improved per-channel approach for converting the frequency band of multiple carrier signals efficiently. The proposed algorithm performs decimation and interpolation using CIC(cascaded integrator comb filter), half-band filter, and FIR filter. In addition, it performs filtering of each sub-channel, and reallocates channel band through FIR low-pass filter in the multiple-channel signal. The computer simulation result shows that the perfect reconstruction of output signal and the flexible frequency band reallocation is performed efficiently by the proposed algorithm.

A Novel Hitting Frequency Point Collision Avoidance Method for Wireless Dual-Channel Networks

  • Quan, Hou-De;Du, Chuan-Bao;Cui, Pei-Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.941-955
    • /
    • 2015
  • In dual-channel networks (DCNs), all frequency hopping (FH) sequences used for data channels are chosen from the original FH sequence used for the control channel by shifting different initial phases. As the number of data channels increases, the hitting frequency point problem becomes considerably serious because DCNs is non-orthogonal synchronization network and FH sequences are non-orthogonal. The increasing severity of the hitting frequency point problem consequently reduces the resource utilization efficiency. To solve this problem, we propose a novel hitting frequency point collision avoidance method, which consists of a sequence-selection strategy called sliding correlation (SC) and a collision avoidance strategy called keeping silent on hitting frequency point (KSHF). SC is used to find the optimal phase-shifted FH sequence with the minimum number of hitting frequency points for a new data channel. The hitting frequency points and their locations in this optimal sequence are also derived for KSHF according to SC strategy. In KSHF, the transceivers transmit or receive symbol information not on the hitting frequency point, but on the next frequency point during the next FH period. Analytical and simulation results demonstrate that unlike the traditional method, the proposed method can effectively reduce the number of hitting frequency points and improve the efficiency of the code resource utilization.

Study on Frequency Selection Method Using Case-Based Reasoning for Cognitive Radio (사례기반 추론 기법을 이용한 인지 라디오 주파수 선택 방법 연구)

  • Park, Jae-Hoon;Choi, Jeung Won;Um, Soo-Bin;Lee, Won-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.58-71
    • /
    • 2019
  • This paper proposes architecture of a cognitive radio engine platform and the allowable frequency channel reasoning method that enables acquisition of the allowable channels for the military tactical network environment. The current military tactical wireless communication system is increasing need to secure a supplementary radio frequency to ensure that multiple wireless networks for different military wireless devices coexist, so that tactical wireless communication between the same or different systems can be operated effectively. This paper presents the allowable frequency channel reasoning method based on cognitive radio engine for realizing DSA(Dynamic Spectrum Access) as an optimal available frequency channel. To this end, a case-based allowable frequency channel reasoning method for cognitive radio devices is proposed through modeling of primary user's traffic status and calculation of channel occupancy probability. Also through the simulation of the performance analysis, changing rate of collision probability between the primary users' occupancy channel and the available channel acquisition information that can be used by the cognitive radio device was analysed.

Channel Estimation Method Using the Correlation in the High-Speed Wireless Transmissions (고속 무선 전송에서 상관관계를 이용한 채널 추정방식)

  • Lee Joo-Hyoung;Kim Joo-Kyoung;Kim Jae-Moung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.1 s.6
    • /
    • pp.63-71
    • /
    • 2005
  • This paper proposes the channel estimation method robust to severe frequency selective fading channels in O%M system using wide bandwidth for the high data rate transmission. DDCE, which uses data between the high correlated symbols, is usually used for channel estimation in the slow fading channels. DDCE can get high gains in the non-selective channels. As the bandwidth of system gets wider, it becomes more severe frequency selective fading environments so that the reliability of data becomes lower and error flow is occurred. FE method, this paper proposed, uses the relation between sub-carriers of OFDM in frequency selective fading channels so FE method gets some gains by adapting the power value at a target frequency to the mean value of channel estimated values of adjacent sub-carriers. Because FE uses only preamble unlike DDCE using data, it is independent of data rate related to the reliability of data and the number of multipath. Consequently, FE can obtain considerable gains in the wideband systems where the errorflow of DDCE is occurred, and FE is applicable to frequency selective fading environments.

  • PDF

Analysis of channel estimation performance associated with the interpolation order in OFDM System (OFDM 시스템에서 보간 순서에 따르는 채널 추정기의 성능 비교)

  • Cho, Chang-Yeon;Kim, Joon-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.125-126
    • /
    • 2007
  • In this paper, we analyze the channel estimation performances associated with the interpolation order for OFDM systems. We first analyze the time varying channel and frequency selective channel, and then we derive the channel Index which indicates the ratio of time axis variation and frequency axis variation. The analyzed results show that time interpolation followed by a frequency interpolation is adequate for the channel with a channel index larger than a certain threshold value and vice versa. Computer simulation explains that the method which decides Interpolation order outperforms fixed order estimation.

  • PDF

A New SC-FDE Transmission Structure for Coping with Narrow Band Jammers and Reducing Pilot Overhead (협대역 재머 대응과 파일럿 오버헤드 감소를 위한 새로운 SC-FDE 전송구조)

  • Joo, So-Young;Choi, Jeung-Won;Kim, Dong-Hyun;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.981-987
    • /
    • 2019
  • In this paper, we propose a new SC-FDE (single carrier frequency domain equalization) structure to cope with narrow band interference signals or jammers and reduce pilot overhead. The conventional SC-FDE structure has a problem that the receiver performance degrades severely due to difficulty in time-domain channel estimation when narrow band jammers exist. In addition, the spectral efficiency is lowered by transmitting pilot at every SC-FDE block to estimate channel response. In order to overcome those problems, the proposed structure is devised to estimate frequency domain channel directly without time domain channel estimation. To reduce the pilot overhead, several data blocks are transmitted between two pilots. The channel estimate of each data block is found through linear interpolation of two channel estimates at two pilots. By performing frequency domain channel equalization using this channel estimate, the distortion by the channel is well compensated when narrow band jammers exist. The performance of the proposed structure is confirmed by computer simulation.

Acoustic Channel Compensation at Mel-frequency Spectrum Domain

  • Jeong, So-Young;Oh, Sang-Hoon;Lee, Soo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1E
    • /
    • pp.43-48
    • /
    • 2003
  • The effects of linear acoustic channels have been analyzed and compensated at mel-frequency feature domain. Unlike popular RASTA filtering our approach incorporates separate filters for each mel-frequency band, which results in better recognition performance for heavy-reverberated speeches.

A Split-channel Two-tone OOK Scheme Considering IoT Communication System in Fading Channel (페이딩 채널에서 사물인터넷을 위한 split-channel two-tone OOk 기법)

  • Lee, Gun-ho;Lee, Eui-soo;Jeong, Eui-rim
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.607-609
    • /
    • 2019
  • The split-channel two-tone OOK method proposed in this paper can improve the communication performance of IoT in fading channel environment. The frequency diversity effect can be obtained by separating the interval of the two tone signals, and a performance gain of 8 dB can be obtained in the fading channel. In addition, by using split-channel, the problem of degradation of the channel bandwidth efficiency caused by the frequency diversity technique can be prevented, thereby reducing the bandwidth efficiency by allocating the remaining frequency channels to other users.

  • PDF

Analysis of Antenna Impact on Wide-band Indoor Radio Channel and Measurement Results at 1 GHz, 5.5 GHz, 10 GHz and 18 GHz

  • Santella, Giovanni
    • Journal of Communications and Networks
    • /
    • v.1 no.3
    • /
    • pp.166-181
    • /
    • 1999
  • The object of this paper is to investigate the influence of antenna pattern on indoor radio channel characteristics. Different from previous works where this analysis was carried out at a fixed frequency using different antennas, in the present paper (where measurements were taken in a wide frequency range) the variation of the radiation pattern was caused by two factors: the change of the radiation pattern when the same antenna was used at different frequenicies and the use of different type of antennas. To carry out this analysis, frequency domain measurements of the indoor radio channel at 1 GHz, 5.5 GHz, 10 GHz and 18 GHz were collected. Measurements were taken using a network analyzer. Serveral re-alizations of the channel transfer function were obtained varying, for each measurement, the positon of the transmitter and keep-ing the receiver fixed. Estimate of the channel impulse response was obtained from the Inverse Fourier Transform (IFT) of the fre-quency response. The measurements were performed in an office enviroment with mostly metallic walls and inner separations. The obtained data were elaborated to obtain the power versus distance relationship, the Cummulative Distribution Functions(CDFs) of rms Delay Spread(DS) and of the 3 dB frequency correlation band-width. Finally, the 3 dB width of the frequency correlation func-tion has been empirically related to the inverse of the rms DS of the impulse response.

  • PDF