• 제목/요약/키워드: Frequency Weighting Curves

검색결과 12건 처리시간 0.019초

조향휠 진동의 안락성 평가를 위한 주파수 가중치 곡선 결정 (Determination of the Frequency Weighting Curves for the Estimation of Discomfort by the Steering Wheel Vibration)

  • 홍석인;장한기;김승한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.1048-1052
    • /
    • 2003
  • This study aims to derive frequency weighting curves for the estimation of driver's discomfort by steering wheel vibration in the vertical and rotational direction with respect to a steering column. Subjective tests for the determination of equal sensation curves, inverse of frequency weighting curves, for the two kinds of vibrations were performed using the sinusoidal signals with reference amplitudes from 0.2m/s$^2$ to 0.4 m/s$^2$ in the frequency range from 5㎐ to 100㎐. Twelve subjects joined at the tests, and median values of the twelve judgments were used to determine the frequency weighting curves. Second experiment was followed to determine relative magnitude between the two frequency weighting curves by direct comparison of discomfort due to the two kinds of vibrations at 50㎐, which showed discomfort by the rotational vibration was 1.5 times of that by the vertical vibration.

  • PDF

체감 진동량 평가를 위한 조향 휠 진동의 주파수 가중치 결정 (Determination of Frequency Weighting Curves for the Evaluation of Steering Wheel Vibration)

  • 홍석인;장한기;김승한
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.165-172
    • /
    • 2003
  • This study aims to find frequency weighting curves for the evaluation of drivers' discomfort by vertical and rotational steering wheel vibration. Equal sensation curves, inverse of frequency weighting curves, were determined for the two kinds of vibrations respectively by using the sinusoidal signals with reference amplitudes from 0.2 to 0.4 m/s2 in the frequency range from 5 to 100 ㎐. Twelve subjects joined at the tests, and median values of the twelve judgments were used to determine the equal sensation curves. An experiment was followed to compare the relative sensation magnitude between the two kinds of equal sensation curves, which showed discomfort by the rotational vibration was 1.5 times of that by the vertical vibration at 50 ㎐.

Measurement and Frequency Weighting Functions for Human Vibration

  • Kee, Dohyung;Park, Hee Sok
    • 대한인간공학회지
    • /
    • 제32권4호
    • /
    • pp.309-319
    • /
    • 2013
  • Objective: The aim of this study is to review and summarize human vibration measurement process, and necessity and methods of frequency weightings for human vibration. Background: Prolonged human exposure to hand-arm vibration and whole-body vibration can result in a range of adverse conditions and the development of occupational diseases such as vibration white finger. For preventing these adverse effects, it is important to correctly apply human vibration measurement process. Method: This manuscript was based on the review and summary of mechanical and human vibration relevant texts, academic papers, materials obtained through web surfing. Results: This manuscript summarizes human vibration measurement process described in ISO standards and relevant texts. The sensitivity of the human body to mechanical vibration is known to be dependent on both the frequency and direction of vibration. To take this into account, varying frequency weighting functions have been developed, and RMS frequency-weighted accelerations are used as the most important quantity to evaluate the effects of vibration on health. ISO provided nine frequency weighting functions in the form of curves and tables. Researches on frequency weightings are focused on development and validation of new frequency weightings to truly reflect the relationship between vibration exposure and its adverse effects. Application: This would be useful information for systematically applying human vibration measurement and analysis process, and for selecting appropriate frequency weighting functions.

조향 휠 수직 진동의 체감량 평가에 관한 연구 (A Study on the Evaluation of Sensation Magnitude of Vertical Vibration of a Steering Wheel)

  • 장한기;홍석인
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.108-113
    • /
    • 2007
  • This study aims to find equivalent comfort contours, reciprocal of frequency weighting curves, for vertical steering wheel vibration. Psychophysical responses were measured from twelve male subjects by using magnitude estimation of relative discomfort due to vertical steering wheel vibrations of magnitude of 0.1 to 1.58 $m/s^2$ in the frequency range of 4 to 250 Hz. Relative discomfort were estimated with a reference vibration of 0.4 $m/s^2$ at 31.5 Hz. Equivalent comfort contours were produced from the median of sensation magnitudes judged by twelve subjects, which showed variation in the shapes with increase of vibration magnitude. A shape of the contour came close to the perception threshold curve with decrease of vibration magnitude. When the vibration magnitude increases, the shape changed close to those in the references of Hong and et al (2003). It is also recommended frequency weighting curves for vertical steering wheel vibration must be expressed as a function of vibration magnitude as well as frequency.

승용차량의 정차진동 주파수에 대한 불편함의 등감각곡선 (Equivalent Discomfort Curve on Idle Vibration Frequency of Passenger Vehicle)

  • 전경진;이재영;안세진;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제22권6호
    • /
    • pp.535-541
    • /
    • 2012
  • The three-down one-up method which is commonly used in the field of psychophysics is employed in this study that is to reveal how much magnitude of vibration makes discomfort in passenger vehicle on idle condition. Thirteen taxi drivers were invited for subject of the experiment where they evaluated the controlled vibrations on rigid seat in terms of idle vibration on passenger vehicle at frequency range from 15 Hz to 40 Hz. As the result, vibration of 100~105 dB is marginal range to make discomfort on passenger seat. Frequency dependency of the discomfort was found at the frequency range, which is the higher frequency the lower discomfort with the same magnitude of vibration. The frequency dependency found here was compared with ISO 2631-1 that is more sensitive at the frequency range.

승차감 평가를 위한 주파수 보정곡선의 분석 (Analysis of the Frequency Weighting Curve for the Evaluation of Ride Comfort)

  • 김영국;박찬경;김석원;김기환;백진성
    • 한국철도학회논문집
    • /
    • 제13권6호
    • /
    • pp.552-558
    • /
    • 2010
  • 철도차량의 승차감은 진동뿐만 아니라 소음, 냄새, 온도 등 많은 요인들에 의해 영향을 받지만 승객에 크게 영향을 주는 진동으로 평가하는 것이 일반적이다. 승차감은 승객이 느끼는 감정이므로 물리적인 가속도의 크기뿐만 아니라 진동에 대한 인간의 감응도(느낌)도 고려하여야 한다. 이러한 진동에 대한 인간의 감응도를 나타낸 것이 주파수 보정곡선이다. 따라서, 철도 차량의 승차감 평가에는 인간의 감응도가 고려된 주파수 보정 가속도를 필요로 한다. 철도차량의 승차감 평가는 많은 규격에 규정되어 있으나, 각각의 규격에 따라 서로 다른 주파수 보정 곡선을 제시하고 있다. 본 논문에서는 국제철도협회, 유럽표준위원회, 국제표준위원회에서 규정한 주파수 보정곡선에 대해 분석하고 그 차이점을 고찰한다. 또한, 주파수 보정곡선의 차이가 고속철도 차량의 승차감 평가에 미치는 영향을 실제의 시운전 시험을 통해 분석하고자 한다.

z변환을 이용한 시간영역에서의 승차감 평가 (Evaluation of Ride Comfort in Time Domain by Using z-Transform)

  • 김영국;김석원;박찬경;김상수;김기환
    • 한국철도학회논문집
    • /
    • 제14권6호
    • /
    • pp.495-500
    • /
    • 2011
  • 철도차량의 승차감은 승객이 느끼는 감정이므로 물리적인 진동의 크기뿐만 아니라 인간의 감응도(느낌)도 고려하여야 하며, 이러한 진동에 대한 인간의 감응도를 나타낸 것이 주파수 보정곡선이다. 주파수 보정곡선은 라플라스 변환형태의 전달함수이기 때문에 이 전달함수를 직접 사용하여 시간 영역에서의 승차감의 평가가 불가능하다. 이를 해결하기 위해서 본 논문에서는 라플라스 변환형태의 전달함수를 시간 영역에서 사용할 수 있는 전달함수로 변환하는 방법을 제시하고 다양한 예제를 통해 이 방법에 대한 타당성을 입증하였다.

앉은 자세 수직축 전신 진동에 대한 한국인의 등감각 곡선 분석 (Analysis of Equal Sensation Curves for the Korean People about Vertical Whole-Body Vibration)

  • 김건우;김민석;유완석
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.105-111
    • /
    • 2010
  • In the field of 'Human Vibration', it has been interested subjects to make equal sensation curves related to translational and rotational direction of whole-body, hand-transmitted and head-transmitted vibration, etc. When we consider the vibration of a vehicle, the main factor is vertical whole-body vibration. Until now, most of equal sensation curves used to derive frequency weighting function had been made using Western people. However, because of the inherent differences (for example, characteristic and shape of body parts, muscular and cellular tissue) between the Western people and the Oriental people, equal sensation curves based on Oriental people might be required. Also, the weight differences between the samples which consist of average-weighted and over-weighted group might cause the difference of equal sensation curves. So, in this study, 20 male Korean people were used to find equal sensation curves subject to vertical whole-body vibration on seated posture. Among 20 males, an over weighted group consisted of 10 male persons and an average weighted group was the others. Integrating and analyzing the data of two groups, some of non-parametric tests such as 'The Wilcoxon Signed Rank Test' and 'The Mann Whitney U test' were used.

장거리 여행용 버스에서의 멀미발생 예측에 관한 연구 (Study on the Motion Sickness Incidence in Express Buses)

  • 장한기;김승한;송치문;김성환;홍석인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.234-240
    • /
    • 2003
  • This study aims to investigate dynamic properties of express buses in the very low frequencies which affect motion sickness incidence. Since passengers often use express buses for long distance traveling, it is a critical point whether a give rise to motion sickness or not. In the study accelerations at the three points on the floor of the six test vehicles were measured during the driving at constant speeds. By applying frequency weighting curves suggested in ISO 2631-1 and ISO 2631-3, physical amount of accelerations were changed into perceptual amount which determines incidence of motion sickness. Motion sickness dose values were calculated from the frequency weighted time history of accelerations, and compared between the vehicles, driving conditions, and the seat positions in the bus. During the driving on public road and high ways for 50 minutes vomiting incidence ratios ranged 0.4 to 0.8%, which were equivalent to 2.4 to 4.8% for 5 hours' driving. The value of 4.8 % means two among 45 passengers may vomit after the traveling, which is very serious situation. Considering the very smooth driving condition at which the data were collected, motion sickness dose values will increase in real situations

  • PDF