• Title/Summary/Keyword: Frequency Spectrum Analysis

Search Result 1,074, Processing Time 0.034 seconds

Frequency Spectrum Analysis of Electromagnetic Waves Radiated by Electric Discharges

  • Park, Dae-Won;Kil, Gyung-Suk;Cheon, Sang-Gyu;Kim, Sun-Jae;Cha, Hyeon-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.389-395
    • /
    • 2012
  • In this paper, we analyzed the frequency spectrum of the electromagnetic waves radiated by an electric discharge as a basic study to develop an on-line diagnostic technique for power equipment installed inside closed-switchboards. In order to simulate local and series arc discharges caused by an electric field concentration and poor connections, three types of electrode systems were fabricated, consisting of needle and plane electrodes and an arc generator meeting the specifications of UL 1699. The experiment was carried out in an electromagnetic anechoic chamber, and the measurement system consisted of a PD free transformer, a loop antenna with a frequency bandwidth of 150 kHz-30 MHz, an ultra log periodic antenna with a frequency bandwidth of 30 MHz-2 GHz, and an EMI test receiver with a frequency bandwidth of 3 Hz-3 GHz. According to the experimental results, the frequency spectra of the electrical discharges were widely distributed across a range of 150 kHz-400 MHz, depending on the defects, while commonly found between 150 kHz and 10 MHz. Therefore, considering the ambient noise and antenna characteristics, the best frequency bandwidth for a measurement system to monitor abnormal conditions by detecting electromagnetic waves in closedswitchboards is 150 kHz-10 MHz.

Seismic Qualification of the Air Cleaning Units for Nuclear Power Plant Ulchin 5&6 (울진 원자력발전소 5,6 호기용 공기정화기에 대한 내진검증)

  • Kim, Jin-Young;Rhee, Hui-Nam;Lee, Joon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1376-1383
    • /
    • 2002
  • Seismic qualification of the Air Cleaning Units for nuclear power plant Ulchin 5&6 has been performed with the guideline of ASME Section III and IEEE 344 code. By using the structural and geometrical similarity analysis, the three models to be analyzed are condensed into a single model and, at the same time, the excitation forces and other operating loads for each model are encompassed with respect to different loading conditions. As the fundamental frequencies of the structure are found to be less than 33Hz, which is the upper frequency limit of the seismic load, response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the structural and electric stability of the major components, modal analysis theory is adopted to derive the required response spectrum at the component locations. As the all combined stresses obtained from the above procedures are less than allowable stresses and no mechanical or electrical failures are found from the seismic testing, the authors confirm the safety of the nuclear equipments Air Cleaning Units studied in this paper.

Seismic Qualification of the Air Cleaning Units for Nuclear Power Plant Ulchin 5&6 (울진 원자력발전소 5,6호기용 공기정화기에 대한 내진검증)

  • Lee, Joon-Keun;Kim, Jin-Young;Chung, Phil-Joong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.404-409
    • /
    • 2001
  • Seismic qualification of the Air Cleaning Units for nuclear power plant Ulchin 5&6 has been performed with the guideline of ASME Section III and IEEE 344 code. By using the structural and geometrical similarity analysis, the three models to be analyzed is condensed into a single model and, at the same time, the excitation forces and other operating loads for each model are encompassed with respect to different loading conditions. As the fundamental frequencies of the structure are found to be less than 33Hz, which is the upper frequency limit of the seismic load, response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the structural and electric stability of the major components, modal analysis theory is adopted to derive the required response spectrum at the component locations. As the all combined stresses obtained from the above procedures are less than allowable stresses and no mechanical or electrical failures are found from the seismic testing, the authors confirm the safety of the nuclear equipments Air Cleaning Units studied in this paper.

  • PDF

A Fast Partial Frequency Spectrum Computation Method for the Efficient Frequency-Domain Beamformer (효율적인 주파수 영역 빔형성기 구현을 위한 국부 스펙트럼 고속 연산 기법)

  • Ha, Chang-Eup;Kim, Wan-Jin;Lee, Dong-Hun;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.160-168
    • /
    • 2011
  • A Frequency domain beamforming technique is widely used in sonar systems with a large number of beams and sensors. In the battlefield environment requiring real-time signal processing, it is needed to optimize the computational complexity of the spectrum computation to implement an efficient and fast frequency domain beamformer. So, in this paper, we proposed the pruned-GSFFT (pruned generalized sliding fast Fourier transform) as a new spectrum computation method. The proposed method help to reduce the computational complexity of the real-time partial spectrum computation by eliminating the redundancy between consecutive input samples and skipping the regardless frequency bands. Also the characteristics of the proposed pruned-GSFFT method and its computational complexity are compared to those of previous FFT algorithms.

Reevaluation of Seismic Fragility Parameters of Nuclear Power Plant Components Considering Uniform Hazard Spectrum

  • Park, In-Kil;Choun, Young-Sun;Seo, Jeong-Moon;Yun, Kwan-Hee
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.586-595
    • /
    • 2002
  • The Seismic probabilistic risk assessment (SPRA) or seismic margin assessment (SMA) have been used for the seismic safety evaluation of nuclear power plant structures and equipments. For the SPRA or SMA, the reference response spectrum should be defined. The site-specific median spectrum has been generally used for the seismic fragility analysis of structures and equipments in a Korean nuclear power plant Since the site-specific spectrum has been developed based on the peak ground motion parameter, the site-specific response spectrum does not represent the same probability of exceedance over the entire frequency range of interest. The uniform hazard spectrum is more appropriate to be used in seismic probabilistic risk assessment than the site- specific spectrum. A method for modifying the seismic fragility parameters that are calculated based on the site-specific median spectrum is described. This simple method was developed to incorporate the effects of the uniform hazard spectrum. The seismic fragility parameters of typical NPP components are modified using the uniform hazard spectrum. The modification factor is used to modify the original fragility parameters. An example uniform hazard spectrum is developed using the available seismic hazard data for the Korean nuclear power plant (NPP) site. This uniform hazard spectrum is used for the modification of fragility parameters.

A response spectrum method for seismic response analysis of structures under multi-support excitations

  • Li, Jian-Hua;Li, Jie
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.255-273
    • /
    • 2005
  • Based on the random vibration theory, a response spectrum method is developed for seismic response analysis of linear, multi-degree-of-freedom structures under multi-support excitations is developed. Various response quantities, including the mean and variance of the peak response, the response mean frequency, are obtained from proposed combination rules in terms of the mean response spectrum. This method makes it possible to apply the response spectrum to the seismic reliability analysis of structures subjected to multi-support excitations. Considering that the tedious numerical integration is required to compute the spectral parameters and correlation coefficients in above combination rules, this paper further offers simplified procedures for their computation, which enhance dramatically the computational efficiency of the suggested method. The proposed procedure is demonstrated for tow numerical examples: (1) two-span continuous beam; (2) two-tower cabled-stayed bridge by using Monte Carlo simulation (MC). For this purpose, this paper also presents an approach to simulation of ground motions, which can take into account both mean and variation properties of response spectrum. Computed results based on the response spectrum method are in good agreement with Monte Carlo simulation results. And compared with the MSRS method, a well-developed multi-support response spectrum method, the proposed method has an incomparable computational efficiency.

Microwave Signal Spectrum Broadening System Based on Time Compression

  • Kong, Menglong;Tan, Zhongwei;Niu, Hui;Li, Hongbo;Gao, Hongpei
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.310-316
    • /
    • 2020
  • We propose and experimentally demonstrate an all-optical radio frequency (RF) spectrum broadening system based on time compression. By utilizing the procedure of dispersion compensation values, the frequency domain is broadened by compressing the linear chirp optical pulse which has been multiplexed by the radio frequency. A detailed mathematical description elucidates that the time compression is a very preferred scheme for spectrum broadening. We also report experimental results to prove this method, magnification factor at 2.7, 8 and 11 have been tested with different dispersion values of fiber, the experimental results agree well with the theoretical results. The proposed system is flexible and the magnification factor is determined by the dispersion values, the proposed scheme is a linear system. In addition, the influence of key parameters, for instance optical bandwidth and the sideband suppression ratio (SSR), are discussed. Magnification factor 11 of the proposed system is demonstrated.

Determination of Shock Response Spectrum Using FRF of Statistical Energy Analysis Method (통계적 에너지 분석법의 FRF를 이용한 충격 응답 스텍트럼(SRS)의 결정)

  • 구성완;황철규;김인성
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.551-560
    • /
    • 2004
  • A method how to determine the shock response spectrum from the FRF of the statistical energy analysis( SEA ) is presented here. The system of 3 different Plates connected by bolt joints is selected simulating missile structural sections Joined together. First, the SEA model was rendered by SEA parameters which were determined from experimental SEA method. Then, the mobility power was input to the SEA model and we can verify the validity of the model in the medium to high frequency range checking the reproduction of output average velocity. And, the shock induced shock response spectrum(SRS) was obtained using SEA FRF and arbitrarily chosen experimental FRF. We have compared the thus obtained SRS with actually measured SRS and they were relatively in good agreement. In this paper, we used the measured SEA FRF and therefore we have got the SRS well agreed with actually measured SHS even in the low frequency range. If the SEA FRF of well verified SEA model is used, the good result will come out in SEA effective frequency range which is more important at SRS.

A New Tempo Feature Extraction Based on Modulation Spectrum Analysis for Music Information Retrieval Tasks

  • Kim, Hyoung-Gook
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.95-106
    • /
    • 2007
  • This paper proposes an effective tempo feature extraction method for music information retrieval. The tempo information is modeled by the narrow-band temporal modulation components, which are decomposed into a modulation spectrum via joint frequency analysis. In implementation, the tempo feature is directly extracted from the modified discrete cosine transform coefficients, which is the output of partial MP3(MPEG 1 Layer 3) decoder. Then, different features are extracted from the amplitudes of modulation spectrum and applied to different music information retrieval tasks. The logarithmic scale modulation frequency coefficients are employed in automatic music emotion classification and music genre classification. The classification precision in both systems is improved significantly. The bit vectors derived from adaptive modulation spectrum is used in audio fingerprinting task That is proved to be able to achieve high robustness in this application. The experimental results in these tasks validate the effectiveness of the proposed tempo feature.

  • PDF

Estimation of Visual Evoked Potentials Using Time-Frequency Analysis (시-주파수 분석법을 이용한 시각자극 유발전위에 관한 연구)

  • 홍석균;성홍모;윤영로;윤형로
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.259-267
    • /
    • 2001
  • The visual evoked potentials(VEPs) is used to assist in the diagnosis of specific disorders associated with involvement of the sensory visual pathways. The P100 latency is an important parameter which is diagnosis of optic nerve disorders. There are characteristics of latency delay, wave distortion, amplitude deduction in abnormal subjects. It is difficult to diagnose in the case of producing peak at the P100 latency. In this paper, difference of pattern between normal VEPs and abnormal VEPs using the Choi-Williams distribution method is studied. We observed the relationship about time and spectrum. The result shown that normal VEPs had maximum spectral value at 20Hz~26.7Hz and abnormal VEPs had maximum spectral value at 16.7Hz~20Hz. Also normal VEPs spectrum is higher than abnormal VEPs spectrum.

  • PDF