• 제목/요약/키워드: Frequency Response Method

검색결과 2,160건 처리시간 0.036초

고속전자밸브를 사용한 유압장치의 주파수응답특성에 관한 연구 (A Study on the Frequency response charcteristics of Hydraulic Equipment using High speed on-off valve)

  • 허준영
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.79-86
    • /
    • 1995
  • Frequency response method is used to design hydraulic servo systems and improve its performance. In this study a method is proposed to get simply the frequency response of the electro-hydraulic servo system which use PWM controlled high-speed on-off valves. Firstly, the describing function of the PWM element is derived and tested. It is found that the character- istic of PWM element could be approximated to a saturation characteristic in the range of allowable frequency. And the dynamic characteristic of the valve-cylinder system could be negligible. The working characteristic of high-speed on-off valve is considered as time delay. So simulation is performed in the basis of the reconstructed block diagram. And this method is verified by experiments.

  • PDF

충격햄머 실험에서 다자유도 주파수 응답스팩트럼의 개선 (An Enhancement of Multi-Dof Frequency Response Spectrum From Impact Hammer Testing)

  • 안세진;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.623-629
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function(FRF) of the structure. However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. Since the response signals generated by the impact hammer are transient and have damping, they are undoubtedly non-periodic. It is inevitable that the signals be acquired for limited recording time, which causes the finite record length error and the leakage error. In this paper, the errors in the frequency response function of multi degree of freedom system are formulated theoretically. And the method to remove these errors is also suggested. This method is based on the optimization technique. A numerical example of 3-dof model shows the validity of the proposed method.

  • PDF

중주파수 응답해석을 위한 축소 기법 (Model Order Reduction for Mid-Frequency Response Analysis)

  • 고진환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.135-138
    • /
    • 2009
  • Most of the studies use model order reduction for low frequency (LF) response analysis due to their high computational efficiency. In LF response analysis, one of model order reduction, algebraic substructuring (AS) retains all LF modes when using the modal superposition. However, in mid-frequency (MF) response analysis, the LF modes make very little contribution and also increase the number of retained modes, which leads to loss of computational efficiency. Therefore, MF response analysis should consider low truncated modes to improve the computational efficiency. The current work is focused on improving the computational efficiency using a AS and a frequency sweep algorithm. Finite element simulation for a MEMS resonator array showed that the performance of the presented method is superior to a conventional method.

  • PDF

주파수응답함수를 이용한 유한요소모델의 개선 및 결합부 동정 (Updating of Finite Element Model and Joint Identification with Frequency Response Function)

  • 서상훈;지태한;박영필
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.61-69
    • /
    • 1997
  • Despite of the development in the finite element method, it is difficult to get the finite element model describing the dynamic characteristics of the complex structure exactly. Therefore a number of different methods have been developed in order to update the finite element model of a structure using vibration test data. This paper outlines the basic formulation for the frequency response function based updating method. One important advantage of this method is that the intermediate step of performing an eigensolution extraction is unnecessary. Using simulated experimental data, studies are conducted in the case of 10 DOF discrete system. The solution of noisy and incomplete experimental data is discussed. True measured frequency response function data are used for updating the finite element model of a beam and a plate. Its applicability to the joint identification is also considered.

  • PDF

부분 구조의 주파수 응답 함수를 이용한 봉의 치수 최적화 (Size Optimization of a Rod Using Frequency Response Functions of Substructures)

  • 윤홍근;이진우
    • 대한기계학회논문집A
    • /
    • 제41권10호
    • /
    • pp.905-913
    • /
    • 2017
  • 본 연구에서는 형상 정보가 주어지지 않은 부품과 형상 정보가 주어진 부품으로 구성된 봉의 고유 주파수를 최대화하는 치수 최적화 방법을 제시한다. 두 부품으로 구성된 봉의 진동 특성을, 각 부품의 형상 대신, 두 부품의 주파수 응답 함수들로부터 예측한다. 이를 위해, 실험 모달 해석 방법을 이용하여 각 부품의 등가 진동계를 구하고, 두 등가 진동계의 질량 행렬과 강성 행렬들로부터, 두 부품이 결합된 봉의 등가 질량 행렬과 강성 행렬을 도출한다. 몇 가지 수치 예제에서, 제시한 방법으로 얻어진 봉의 등가 진동계의 주파수 응답 함수를 실제 봉의 주파수 응답 함수와 비교하여, 등가 진동계를 이용한 고유 주파수 예측 방법의 유효성을 검증한다. 검증된 방법으로 얻어진 등가 진동계를 이용하여, 봉의 1차 고유 주파수를 최대화하기 위한 치수 최적화 문제를 정식화하고, 최적화 알고리즘을 사용하여 봉의 구조를 최적화한다.

주파수 응답함수를 이용한 구조물 고유진동수 극대화를 위한 최적 지지점 선정 (Selection of Optimal Supporting Position to Maximize Natural Frequency of the Structure Using Frequency Response Function)

  • 박용화;정완섭;박윤식
    • 소음진동
    • /
    • 제10권4호
    • /
    • pp.648-654
    • /
    • 2000
  • A procedure to determine the realizable optimal positions of rigid supports is suggested to get a maximum fundamental natural frequency. a measured frequency response function based substructure-coupling technique is used to model the supported structure. The optimization procedure carries out the eigenvalue sensitivity analysis with respect to the stiffness of supports. As a result of such stiffness optimization, the optimal rigid-support positions are shown to be determined by choosing the position of the largest stiffness. The optimally determined support conditions are verified to satisfy the eigenvalue limit theorem. To demonstrate the effectiveness of the proposed method, the optimal support positions of a plate model are investigated. Experimental results indicate that the proposed method can effectively find out the optimal support conditions of the structure just based on the measured frequency response functions without any use of numerical model of the structure.

  • PDF

Frequency response of rectangular plates with free-edge openings and carlings subjected to point excitation force and enforced displacement at boundaries

  • Cho, Dae Seung;Kim, Byung Hee;Kim, Jin-Hyeong;Vladimir, Nikola;Choi, Tae Muk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권2호
    • /
    • pp.117-126
    • /
    • 2016
  • In this paper, a numerical procedure for the natural vibration analysis of plates with openings and carlings based on the assumed mode method is extended to assess their forced response. Firstly, natural response of plates with openings and carlings is calculated from the eigenvalue equation derived by using Lagrange's equation of motion. Secondly, the mode superposition method is applied to determine frequency response. Mindlin theory is adopted for plate modelling and the effect of openings is taken into account by subtracting their potential and kinetic energies from the corresponding plate energies. Natural and frequency response of plates with openings and carlings subjected to point excitation force and enforced acceleration at boundaries, respectively, is analysed by using developed in-house code. For the validation of the developed method and the code, extensive numerical results, related to plates with different opening shape, carlings and boundary conditions, are compared with numerical data from the relevant literature and with finite element solutions obtained by general finite element tool.

우세 주파수 영역에서의 응답 매칭 방법을 이용한 시스템 저차화 (System reduction using response matching method in dominant frequency range)

  • 강동석;김수중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.150-154
    • /
    • 1987
  • A new mixed approximation method is proposed for the model reduction of high order linear and time-invariant dynamic systems. This method makes allowance for stability and feature retention simultaneously. After defining dominant frequency range which affects relative stability of systems, a part of denominator is obtained using the energy dispersion method and tests are obtained using dominant frequency response matching method. The proposed method reflects the characteristic of the original system more faithfully and guarantees absolute stability of the reduction model.

  • PDF

하이드로릭 마운트가 장착된 지지계의 고유치 해석 (Eigen-Analysis of Engine mount system with Hydraulic Mount)

  • 고강호;김영호
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.800-805
    • /
    • 2000
  • To determine the modal matrix and modal frequency of engine mount system, we most solve so-called eigen-value problem. However eigen-value problem of engine mount system with hydraulic mount can not be solved by general eigne-analysis algorithm because the properties of hydraulic mount vary with frequency. so in this paper the method for modal analysis of rigid body motions of an engine supported by hydraulic mount is proposed. Natural frequencies and mode shapes of this nonlinear system are obtained by using complex exponential method and Laplace transformation method. In time domain, impulse response functions are calculated by (two-sided) discrete inverse Fourier Transformation of forced frequency response functions achieved by Laplace transformation of the differential equation of motion. Considering the fact that frequency response functions synthesized by modal parameters form proposed method are in good agreement with original FRFs, it is proved that the proposed method is very efficient and useful for the analysis of eigne-value problem of hydraulic engine mount system.

  • PDF

FRF를 이용한 동적 구조 시스템의 구조추정 및 재해석 (Reanalysis for Correlating and Updating Dynamic Systems Using Frequency Response Functions)

  • 한경봉;박선규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.49-56
    • /
    • 2004
  • Model updating is a very active research field, in which significant efforts has been invested in recent years. Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to be unpredictable when presented with real experimental data that are-unavoidably-corrupted with uncorrected noise content. In this paper, Reanalysis using frequency response functions for correlating and updating dynamic systems is presented. A transformation matrix is obtained from the relationship between the complex and the normal frequency response functions of a structure. The transformation matrix is employed to calculate the modified damping matrix of the system. The modified mass and stiffness matrices are identified from the normal frequency response functions by using the least squares method. One simulated system is employed to illustrate the applicability of the proposed method. The result indicate that the damping matrix of correlated finite element model can be identified accurately by the proposed method. In addition, the robustness of the new approach uniformly distributed measurement noise Is also addressed.

  • PDF