• Title/Summary/Keyword: Frequency Regulation

Search Result 637, Processing Time 0.036 seconds

Circuit Design and Performance Analysis of CCFL Dimming Controller With Frequency Modulation

  • Kim, Cherl-Jin;Ji, Jae-Geun;Yoon, Shin-Yong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.201-205
    • /
    • 2004
  • The CCFL dimming control methods are generally used lamp current regulation or average current adjustment method feeding the CCFL inverter. Inverter operation frequency is higher than resonant frequency for safe operation. In this study, we design the half-bridge type series and parallel resonant converter circuit that switches at variable frequency modulation methods to control the output power. This method has advantages such as low EMI and reduced harmonics, and it is convenient for dimming control using a microprocessor. The validity of this study is confirmed from the simulation and experimental results.

New Partial Resonant Zero Voltage Switching PWM High Frequency Inverter using Induction Heating (유도 가열용에 사용되어지는 새로운 부분공진형 영전압 스위칭 PWM 고주파 인버터)

  • Jung, Young-Su;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.261-266
    • /
    • 2015
  • This paper presents a newly proposed prototype of voltage-fed half-bridge partial resonant zero voltage switching PWM inverter operating at a constant frequency variable power regulation scheme, which is more suitable and acceptable for induction heated(IH) cooking appliances. This application-specific high frequency inverter circuit topology using a new generation specially-designed IGBTs can operate under a principle of a fixed frequency ZVS-PWM strategy. The operating principle of a new partial resonant inverter circuit is described on the basis of its computer-aided simulation analysis, its including steady-state operating characteristics.

Comparative Analysis of BESS and Governor Responses for Maximum Load Variations in Korea Power System (국내 계통 최대부하변동에 대한 BESS 및 조속기 특성 비교 분석)

  • Kang, Han-Gu;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.194-198
    • /
    • 2018
  • The government established the 8th national energy plan that electricity energy from renewables in 2030 will be 20%. The frequency stability problem is one of the key issues to overcome for accomplishing the energy plan. Frequency quality deteriorates due to short term variations of renewables output. Battery energy storage system(BESS) is considered as a good alternative to improve the frequency quality due to its quick response. In this paper, we examined the effectiveness of BESS against the conventional governor properties.

Direct Torque Control for Induction Motors Using Fuzzy Variable Switching Sector (퍼지 가변스위칭 섹터기법를 이용한 유도전동기의 직접토크 제어)

  • 윤인식;서영민;류지수;이기상;홍순찬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.233-233
    • /
    • 2000
  • Direct torque control (DTC) scheme provides a very quick torque response without the complex field-orientation block and inner current regulation loop. DTC is known as an appropriate scheme for high power induction motet drives because it can be used at lower switching frequency. There are two major drawbacks with the application of DTC schemes : one is large current harmonics due to flux drooping in a low speed range, the other is that the inverter switching frequency is varying according to motor parameters and operating speed. Switching devices in the power electronics drives should be supported for relatively high switching frequency. In this paper, a P-type fuzzy controller to realize the variable switching sector scheme and a PID-type fuzzy switching frequency regulator are adopted. A meaningful contribution of this paper is to propose a simple realization scheme of the fuzzy switching frequency regulator. Simulation results show the effectiveness of those propositions.

  • PDF

A New Control Scheme for a Class-D Inverter with Induction Heating Jar Application by Constant Switching Frequency

  • Choi Won-Suk;Park Nam-Ju;Lee Dong-Yun;Hyun Dong-Seok
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.272-281
    • /
    • 2005
  • In this paper, a simple power control scheme for a constant frequency Class-D inverter with a variable duty cycle is proposed. It is more suitable and acceptable for high- frequency induction heating (IH) jar applications. The proposed control scheme has the advantages of not only wide power regulation range but also ease of control output power. Also it can achieve a stable and efficient Zero-Voltage-Switching (ZVS) in a whole load range. The control principles of the proposed method are described in detail and its validity is verified through simulated and experimental results on 42.8kHz IGBT for induction heating rated on 1.6kW with constant frequency variable power.

Series Load Resonant Soft-Switching PWM High Frequency Inverter with Auxiliary Active Edge-Resonant Snubber

  • Saha, Bishwajit;Kim, Hun-Ho;Han, Ho-Dong;Kwon, Soon-Kurl;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.278-280
    • /
    • 2006
  • In this paper, a novel type of auxiliary active snubbingcircuit assisted quasi-resonant soft-switching pulse width modulation inverter is proposed for consumer induction heating equipments. The operation principle of this high frequency inverter is described using switching modes and equivalent circuits. This newly developed series resonant high frequency inverter can regulate its high frequency output AC power under a principle of constant frequency active edge resonant soft- switching commutation by asymmetrical PWM control system. The high frequency power regulation and actual power conversion efficiency characteristics of consumer induction heating (IH) products using the proposed soft-switching pulse width modulation (PWM) series load resonant high frequency inverter evaluated. The practical effectiveness and operating performance of high frequency inverter are discussion on the basis of simulation and experimental results as compared with the conventional soft-switching high frequency inverter.

  • PDF

Single Phase Utility Frequency AC-High Frequency AC Matrix Converter Using One-Chip Reverse Blocking IGBTs based Bidirectional Switches

  • Hisayuki, Sugimura;Kwon, Soon-Kurl;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.125-128
    • /
    • 2006
  • This paper presents a novel type soft switching PWM power frequency AC-AC converter using bidirectional active switches or single phase utility frequency AC-high frequency AC matrix converter. This converter can directly convert utility frequency AC (UFAC, 50Hz/60Hz) power to high frequency AC (HFAC) power ranging more than 20kHz up to 100kHz. A novel soft switching PWM prototype of high frequency multi-resonant PWM controlled UFAC-HFAC matrix converter using antiparallel one-chip reverse blocking IGBTs manufactured by IXYS corp. is based on the soft switching resonance with asymmetrical duty cycle PWM strategy. This single phase UFAC-HFAC matrix converter has some remarkable features as electrolytic capacitor DC busline linkless topology, unity power factor correction and sine-wave line current shaping, simple configuration with minimum circuit components, high efficiency and downsizing. This series load resonant UFAC-HFAC matrix converter, incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances in home uses and business-uses. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are illustrated and discussed on the basis of simulation and experimental results.

  • PDF

Induction Heated Load Resonant Tank High Frequency Inverter with Asymmetrical Auxiliary Active Edge-Resonant Soft-Switching Scheme

  • Saha Bishwajit;Fathy Khairy;Kwon Soon-Kurl;Lee Hyun-Woo;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.200-202
    • /
    • 2006
  • In this paper, a novel type of auxiliary active snubbing circuit assisted quasi-resonant soft-switching pulse width modulation inverter is proposed for consumer induction heating equipments. The operation principle of this high frequency inverter is described using switching modes and equivalent circuits. This newly developed series resonant high frequency inverter can regulate its high frequency output AC power under a principle of constant frequency active edge resonant soft-switching commutation by asymmetrical PWM control system. The high frequency power regulation and actual power conversion efficiency characteristics of consumer induction heating (IH) products using the proposed soft-switching pulse width modulation (PWM) series load resonant high frequency inverter evaluated. The practical effectiveness and operating performance of high frequency inverter are discussion on the basis of simulation and experimental results as compared with the conventional soft-switching high frequency inverter.

  • PDF

Fatigue and Fatigue-regulation Behavior in Hemodialysis Patients (혈액투석 환자의 피로와 피로조절행위)

  • Kim, Hye-Won
    • Journal of Digital Convergence
    • /
    • v.10 no.5
    • /
    • pp.301-305
    • /
    • 2012
  • This study was performed to examine the relationship between fatigue and fatigue-regulation behavior in Hemodialysis(HD) patients. Methods: The subjects for this study were 107 patients on HD who were registered in a hospital in Seoul. The data were collected from August 2 to August 14, 2010. The collected data were analyzed by the SPSS WIN 12.0 program. Results: The mean score of fatigue was 77.1 which means their experience of high level fatigue. Frequency of the fatigue-regulation behavior and the mean of efficiency of the fatigue-regulation behavior was 8.8 and 22.8. Positive correlation was found between fatigue and fatigue-regulation behavior (r=.45, p=.000). Conclusion: It is considered that the study emphasizes for the healthcare providers to recognize fatigue as the important nursing issue for HD patients. And it is necessary to develop an evidence-based nursing intervention program for regulating fatigue in HD patients.

New Control Method for Power Decoupling of Electrolytic Capacitor-less Photovoltaic Micro-Inverter with Primary Side Regulation

  • Irfan, Mohammad Sameer;Shin, Jong-Hyun;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.677-687
    • /
    • 2018
  • This paper presents a novel power decoupling control scheme with the bidirectional buck-boost converter for primary-side regulation photovoltaic (PV) micro-inverter. With the proposed power decoupling control scheme, small-capacitance film capacitors are used to overcome the life-span and reliability limitations of the large-capacitance electrolytic capacitors. Then, an improved flyback PV inverter is employed in continuous conduction mode with primary-side regulation for the PV power conditioning. The proposed power-decoupling controller shares the reference for primary side current regulation of the flyback PV inverter. The decoupling controller shapes the input current of the bidirectional buck-boost converter. The shared reference eliminates the phase-delay between the input current to the bidirectional buck-boost converter and the double frequency current at the PV primary current. The elimination of the phase-delay in dynamic response enhances the ripple rejection capability of the power decoupling buck-boost converter even with small film capacitor. With proposed power decoupling control scheme, the additional advantage of the primary-side regulation of flyback PV inverter is that there is no need to have an extra current sensor for obtaining the ripplecurrent reference of the decoupling current-controller of the power-decoupling buck-boost converter. Therefore, the proposed power decoupling control scheme is cost-effective as well as the size benefit. A new transient analysis is carried out which includes the source voltage dynamics instead of considering the source voltage as a pure voltage source. For verification of the proposed control scheme, simulation and experimental results are presented.