• 제목/요약/키워드: Frequency Matrix

검색결과 1,170건 처리시간 0.026초

주파수 응답함수를 이용한 구조 파라메터 예측 (Identification of Structural Parameters from Frequency Response Functions)

  • 김규식;강연준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.863-869
    • /
    • 2007
  • An improved method based on a normal frequency response function (FRF) is proposed to identify structural parameters such as mass, stiffness and damping matrices directly from the FRFs of a linear mechanical system. The method for estimating structural parameters directly from the measured FRFs of a structure is presented. This paper demonstrates that the characteristic matrices are extracted more accurately by using a weighted equation and eliminating the matrix inverse operation. The method is verified for a four degree-of-freedom lumped parameter system and an eight degree-of-freedom finite element beam. Experimental verification is also performed for a free-free steel beam whose size and physical properties are the same as those of the finite element beam. The results show that the structural parameters, especially the damping matrix, can be estimated more accurately by the proposed method.

  • PDF

유한요소-경계요소 조합에 의한 3차원 유체저장 구조물의 주파수 응답해석 (Three Dimesional Analysis of Liquid Storage Tanks Using FE-BE Coupling Method in Frequency Domin)

  • 김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.275-283
    • /
    • 1999
  • To predict the dynamic behavior of the cylindrical liquid storage tank subjected to seismic ground motion three dimesional analysis with liquid-structure interaction must be performed, In this study a three dimensional dynamic analysis method over the frequency domain using FE-BE coupling technique which combines the efficiency of the boundary elements for liquid with the versatility of the finite shell elements for tank. The liquid region is modeled using boundary elements which can counter the sloshing effect at free surface and the structure region the tank itself is modeled using the degenerated finite shell elements. At the beginning of the procedure the equivalent mass matrix of the liquid is generated by boundary elements procedure. Then this equivalent mass matrix is combined with the mass matrix of the structure to produce the global mass matrix in the equation of the motion of fluid-structure interaction problem In order to demonstrate the accuracy and validity of the developed method the numerical results re compared with the previous studies. Finally the effects of the fluid-structure interaction on the natural frequency and dynamic response of the system are analyzed.

  • PDF

재해석 기법을 이용한 동적 구조시스템의 System Identification (System Identification of Dynamic Systems Using Structural Reanalysis Method)

  • 한경봉;박선규;김형열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.421-424
    • /
    • 2004
  • Model updating is a very active research field, in which significant efforts has been invested in recent years. Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to be unpredictable when presented with real experimental data that are-unavoidably-corrupted with uncorrelated noise content. In this paper, Reanalysis using frequency response functions for correlating and updating dynamic systems is presented. A transformation matrix is obtained from the relationship between the complex and the normal frequency response functions of a structure. The transformation matrix is employed to calculate the modified damping matrix of the system. The modified mass and stiffness matrices are identified from the normal frequency response functions by using the least squares method. Full scale pseudo dynamic pier test is employed to illustrate the applicability of the proposed method. The result indicate that the damping matrix of correlated finite element model can be identified accurately by the proposed method. In addition, the robustness of the new approach uniformly distributed measurement noise is also addressed.

  • PDF

Modal tracking of seismically-excited buildings using stochastic system identification

  • Chang, Chia-Ming;Chou, Jau-Yu
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.419-433
    • /
    • 2020
  • Investigation of structural integrity has been a critical issue in the field of civil engineering for years. Visual inspection is one of the most available methods to explore deteriorative components in structures. Still, this method is not applicable to invisible damage of structures. Alternatively, system identification methods are capable of tracking modal properties of structures over time. The deviation of these dynamic properties can serve as indicators to access structural integrity. In this study, a modal tracking technique using frequency-domain system identification from seismic responses of structures is proposed. The method first segments the measured signals into overlapped sequential portions and then establishes multiple Hankel matrices. Each Hankel matrix is then converted to the frequency domain, and a temporal-average frequency-domain Hankel matrix can be calculated. This study also proposes the frequency band selection that can divide the frequency-domain Hankel matrix into several portions in accordance with referenced natural frequencies. Once these referenced natural frequencies are unavailable, the first few right singular vectors by the singular value decomposition can offer these references. Finally, the frequency-domain stochastic subspace identification tracks the natural frequencies and mode shapes of structures through quick stabilization diagrams. To evaluate performance of the proposed method, a numerical study is carried out. Moreover, the long-term monitoring strong motion records at a specific site are exploited to assess the tracking performance. As seen in results, the proposed method is capable of tracking modal properties through seismic responses of structures.

Joint Time Delay and Angle Estimation Using the Matrix Pencil Method Based on Information Reconstruction Vector

  • Li, Haiwen;Ren, Xiukun;Bai, Ting;Zhang, Long
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5860-5876
    • /
    • 2018
  • A single snapshot data can only provide limited amount of information so that the rank of covariance matrix is not full, which is not adopted to complete the parameter estimation directly using the traditional super-resolution method. Aiming at solving the problem, a joint time delay and angle estimation using matrix pencil method based on information reconstruction vector for orthogonal frequency division multiplexing (OFDM) signal is proposed. Firstly, according to the channel frequency response vector of each array element, the algorithm reconstructs the vector data with delay and angle parameter information from both frequency and space dimensions. Then the enhanced data matrix for the extended array element is constructed, and the parameter vector of time delay and angle is estimated by the two-dimensional matrix pencil (2D MP) algorithm. Finally, the joint estimation of two-dimensional parameters is accomplished by the parameter pairing. The algorithm does not need a pseudo-spectral peak search, and the location of the target can be determined only by a single receiver, which can reduce the overhead of the positioning system. The theoretical analysis and simulation results show that the estimation accuracy of the proposed method in a single snapshot and low signal-to-noise ratio environment is much higher than that of Root Multiple Signal Classification algorithm (Root-MUSIC), and this method also achieves the higher estimation performance and efficiency with lower complexity cost compared to the one-dimensional matrix pencil algorithm.

Matrix Factorization을 이용한 음성 특징 파라미터 추출 및 인식 (Feature Parameter Extraction and Speech Recognition Using Matrix Factorization)

  • 이광석;허강인
    • 한국정보통신학회논문지
    • /
    • 제10권7호
    • /
    • pp.1307-1311
    • /
    • 2006
  • 본 연구에서는 행렬 분해 (Matrix Factorization)를 이용하여 음성 스펙트럼의 부분적 특정을 나타낼 수 있는 새로운 음성 파라마터를 제안한다. 제안된 파라미터는 행렬내의 모든 원소가 음수가 아니라는 조건에서 행렬분해 과정을 거치게 되고 고차원의 데이터가 효과적으로 축소되어 나타남을 알 수 있다. 차원 축소된 데이터는 입력 데이터의 부분적인 특성을 표현한다. 음성 특징 추출 과정에서 일반적으로 사용되는 멜 필터뱅크 (Mel-Filter Bank)의 출력 을 Non-Negative 행렬 분해(NMF:Non-Negative Matrix Factorization) 알고리즘의 입 력으로 사용하고, 알고리즘을 통해 차원 축소된 데이터를 음성인식기의 입력으로 사용하여 멜 주파수 캡스트럼 계수 (MFCC: Mel Frequency Cepstral Coefficient)의 인식결과와 비교해 보았다. 인식결과를 통하여 일반적으로 음성인식기의 성능평가를 위해 사용되는 MFCC에 비하여 제안된 특정 파라미터가 인식 성능이 뛰어남을 알 수 있었다.

흡음재가 조합된 헬름홀츠 공명기의 흡음성능 (Sound Absorption Performance of a Helmholtz Resonator combined with Porous Materials)

  • 이영철;이선기;송화영;이동훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.280-285
    • /
    • 2008
  • The helmholtz resonator with the perforated neck has demerits that the absorption performance is not so outstanding in an anti-resonance frequency and high frequency bandwidth. In order to overcome these problems, in the paper, a resonator combined with porous material is proposed. The absorption performances of resonators are measured by two-microphone method and estimated by transfer matrix method. The experimentally measured values of normal absorption coefficients agree well with the corresponding values from the transfer matrix method. Because of the porous material, it is shown that the absorption performance have been significantly improved in the anti-resonance frequency and high frequency bandwidth.

  • PDF

펄스응답 순환행렬의 특이치 분해를 이용한 강인한 차수감소 모델예측제어기의 설계 (Design of Robust Reduced-Order Model Predictive Control using Singular Value Decomposition of Pulse Response Circulant Matrix)

  • 김상훈;문혜진;이광순
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.413-419
    • /
    • 1998
  • A novel order-reduction technique for model predictive control(MPC) is proposed based on the singular value decomposition(SVD) of a pulse response circulant matrix(PRCM) of a concerned system. It is first investigated that the PRCM (in the limit) contains a complete information of the frequency response of a system and its SVD decomposes the information into the respective principal directions at each frequency. This enables us to isolate the significant modes of the system and to devise the proposed order-reduction technique. Though the primary purpose of the proposed technique is to diminish the required computation in MPC, the clear frequency decomposition of the SVD of the PRCM also enables us to improve the robustness through selective excitation of frequency modes. Performance of the proposed technique is illustrated through two numerical examples.

  • PDF

흡음재가 조합된 헬름홀츠 공명기의 흡음성능에 관한 연구 (A Study on the Sound Absorption Performance of a Helmholtz Resonator Combined with Porous Materials)

  • 이동훈;송화영
    • 한국소음진동공학회논문집
    • /
    • 제19권6호
    • /
    • pp.628-633
    • /
    • 2009
  • The helmholtz resonator with the perforated neck has demerits that the absorption performance is not so outstanding in an anti-resonance frequency and high frequency bandwidth. In order to overcome these problems, in the paper, a resonator combined with porous material is proposed. The absorption performances of resonators are measured by two-microphone method and estimated by transfer matrix method. The experimentally measured values of normal absorption coefficients agree well with the corresponding values from the transfer matrix method. Because of the porous material, it is shown that the absorption performance have been significantly improved in the anti-resonance frequency and high frequency bandwidth.

명시적 주파수종속 2차원 무한요소를 사용한 지반-구조물 상호작용의 시간영역해석 (Soil-Structure Interaction Analysis in the Time Domain Using Explicit Frequency-Dependent Two Dimensional Infinite Elements)

  • 윤정방;김두기
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.42-49
    • /
    • 1997
  • In this paper, the method for soil-structure interaction analyses in the time domain is proposed. The far field soil region which is the outside of the artificial boundary is modeled by using explicit frequency-dependent two dimensional infinite elements which can include multiple wave components propagating into the unbounded medium. Since the dynamic stiffness matrix of the far field soil region using the proposed infinite elements is obtained explicitly in terms of exciting frequencies and constants in the frequency domain, the matrix can be easily transformed into the displacement unit-impulse response matrix, which corresponds to a convolution integral of it in the time domain. To verify the proposed method for soil-structure interaction analyses in the time domain, the displacement responses due to an impulse load on the surface of a soil layer with the rigid bed rock are compared with those obtained by the method in the frequency domain and those by models with extend finite element meshes. Good agreements have been found between them.

  • PDF