• Title/Summary/Keyword: Frequencies

Search Result 10,469, Processing Time 0.03 seconds

Optimal placement and tuning of multiple tuned mass dampers for suppressing multi-mode structural response

  • Warnitchai, Pennung;Hoang, Nam
    • Smart Structures and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-24
    • /
    • 2006
  • The optimal design of multiple tuned mass dampers (multiple TMD's) to suppress multi-mode structural response of beams and floor structures was investigated. A new method using a numerical optimizer, which can effectively handle a large number of design variables, was employed to search for both optimal placement and tuning of TMD's for these structures under wide-band loading. The first design problem considered was vibration control of a simple beam using 10 TMD's. The results confirmed that for structures with widelyspaced natural frequencies, multiple TMD's can be adequately designed by treating each structural vibration mode as an equivalent SDOF system. Next, the control of a beam structure with two closely-spaced natural frequencies was investigated. The results showed that the most effective multiple TMD's have their natural frequencies distributed over a range covering the two controlled structural frequencies and have low damping ratios. Moreover, a single TMD can also be made effective in controlling two modes with closely spaced frequencies by a newly identified control mechanism, but the effectiveness can be greatly impaired when the loading position changes. Finally, a realistic problem of a large floor structure with 5 closely spaced frequencies was presented. The acceleration responses at 5 positions on the floor excited by 3 wide-band forces were simultaneously suppressed using 10 TMD's. The obtained multiple TMD's were shown to be very effective and robust.

A near control technology using high frequencies in audible frequency between smart devices

  • Chung, Myoungbeom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.8
    • /
    • pp.61-67
    • /
    • 2015
  • The existing methods for control between smart devices in near used Bluetooth, WiFi-Direct, or socket communication using Wi-Fi. However, those have a problem that can not use when operating system of each smart devices is different or when socket server is not working. In this paper, we proposed a new near control technology using High frequencies in audible frequency between smart devices to supplement the problem of existing methods. High frequencies use micro-phone and speaker of smart device and are a control signals that is combined high frequencies within 18kHz ~ 22kHz among audible frequency range. The proposed technology using High frequencies do not need any extra communication modules or socket servers and can use the most smart devices without operating system of devices. To evaluate the performance of the proposed technology, we developed a music play and music control application applied the proposed technology and tested a control experiment using the developed applications. The control success rate was 97% and recognition rate of surrounding people about using high frequencies was under 5%. Therefore, the proposed technology will be the useful technology to control between smart devices in near.

Frequency analysis of liquid sloshing in prolate spheroidal containers and comparison with aerospace spherical and cylindrical tanks

  • Mohammad Mahdi Mohammadi;Hojat Taei;Hamid Moosazadeh;Mohammad Sadeghi
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.439-455
    • /
    • 2023
  • Free surface fluid oscillation in prolate spheroidal tanks has been investigated analytically in this study. This paper aims is to investigate the sloshing frequencies in spheroidal prolate tanks and compare them with conventional cylindrical and spherical containers to select the best tank geometry for use in space launch vehicles in which the volume of fuel is very high. Based on this, the analytical method (Fourier series expansion) and potential fluid theory in the spheroidal coordinate system are used to extract and analyze the governing differential equations of motion. Then, according to different aspect ratios and other parameters such as filling levels, the fluid sloshing frequencies in the spheroidal prolate tank are determined and evaluated based on various parameters. The natural frequencies obtained for a particular tank are compared with other literature and show a good agreement with these results. In addition, spheroidal prolate tank frequencies have been compared with sloshing frequencies in cylindrical and spherical containers in different modes. Results show that when the prolate spheroidal tank is nearly full and in the worst case when the tank is half full and the free fluid surface is the highest, the prolate spheroidal natural frequencies are higher than of spherical and cylindrical tanks. Therefore, the use of spheroidal tanks in heavy space launch vehicles, in addition to the optimal use of placement space, significantly reduces the destructive effects of sloshing.

Free vibrations of circular arches with variable cross-section

  • Wilson, James F.;Lee, Byoung Koo;Oh, Sang Jin
    • Structural Engineering and Mechanics
    • /
    • v.2 no.4
    • /
    • pp.345-357
    • /
    • 1994
  • The differential equations governing free, in-plane vibrations of linearly elastic circular arches with variable cross-sections are derived and solve numerically for quadratic arches with three types of rectangular cross sections. Frequencies, mode shapes, cross-sectional load distributions, and the effects of rotatory inertia on frequencies are reported. Experimental measurements of frequencies and their corresponding mode shapes agree closely with those predicted by theory. The numerical methods presented here for computing frequencies and mode shapes are efficient and reliable.

Damage monitoring scheme of beam-type structures using time history of natural frequencies (고유진동수의 시간이력을 이용한 보 구조물 손상 모니터링 기법)

  • 박재형;김정태;류연선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.41-47
    • /
    • 2004
  • The objective of this paper is to monitor damage in beam-type structures by using time history of natural frequencies. First, numerical experiments on test beams are described, Dynamic responses of the test structures are obtained for several damage scenarios in a consequent order. Next, the time history of natural frequencies are extracted for the first four modes from the dynamic responses of the test structures. Finally, damage detection in the test structures is performed using the time-history of natural frequencies.

  • PDF

Efficient Use of Radio Frequencies with Civil and Military Cooperation (${\cdot}$군 협력을 통한 주파수 자원의 효율적 사용방안)

  • Kim, Tae-Seong;Yu, Hye-Won;Lee, Su-Hyeong
    • Journal of Korea Technology Innovation Society
    • /
    • v.8 no.1
    • /
    • pp.77-93
    • /
    • 2005
  • This study examines the efficient use of radio frequencies, which become one of the new economic resources, with civil and military cooperation. The current status of radio frequency resource and its future demands are predicted. Some problems and solutions regarding the civil and military usage of frequencies are suggested. Finally, economic, systematic and technical plans are presented for efficient use of frequencies.

  • PDF

A Study on the Operation Frequencies of the Multiple Tie Tamper (Multiple Tie Tamper의 투입주기평가에 관한 연구)

  • 오지택
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.434-441
    • /
    • 2000
  • This paper estabilsh the systematical scheme that evaluates the operation frequencies of the MTT(Multiple Tie Tamper). An evaluation of the operation frequencies, covering 4 different permanent ways that are Kyungbu, Homan, Jungang and Youngdong, has been carried out using real track irregularities. The deterioration rate of track irregularities used to evaluate rational operation frequencies of MTT in a block of railway track. Furthermore, this paper provides the scheme that prevents damage due to excess using of MTT and to promote efficiency of MTT application.

  • PDF

A Power-Aware Scheduling Algorithm by Setting Smoothing Frequencies (주파수 평활화 기법을 이용한 전력 관리 알고리즘)

  • Kweon, Hyek-Seong;Ahn, Byoung-Chul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.78-85
    • /
    • 2008
  • Most researches for power management have focused on increasing the utilization of system performance by scaling operating frequency or operating voltage. If operating frequency is changed frequently, it reduces the real system performance. To reduce power consumption, alternative approaches use the limited number of operating frequencies or set the smoothing frequencies during execution to increase the system performance, but they are not suitable for real time applications. To reduce power consumption and increase system performance for real time applications, this paper proposes a new power-aware schedule method by allocating operating frequencies and by setting smoothing frequencies. The algorithm predicts so that frequencies with continuous interval are mapped into discrete operating frequencies. The frequency smoothing reduces overheads of systems caused by changing operating frequencies frequently as well as power consumption caused by the frequency mismatch at a wide frequency interval. The simulation results show that the proposed algorithm reduces the power consumption up to 40% at maximum and 15% on average compared to the CC RT-DVS.

Development of Monitoring and Diagnosis System for Linear Motion Unit (직선 운동 유닛의 감시 및 진단 시스템 개발)

  • Huang, Jian;Kim, Hwa-Young;Ahn, Jung-Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.635-636
    • /
    • 2012
  • In the present work, investigations by high frequency resonance technique for diagnosis of defect frequencies of linear motion unit are reported. Raw vibration signature of the moving parts at different speeds of operation has been demodulated. Envelope detected spectrum is analyzed to evaluate various defect frequencies and their energy levels. Experimentally evaluated frequencies are compared with theoretically determined defect frequencies. These frequency values and their energy levels are used to monitor intrinsic condition of linear motion unit as well as to establish severity of existing/developed defects on the LM guide and inside the LM block. Relative comparisons of linear motion units of the same type are made at various operating speeds under identical conditions of operation on the basis of identified defect frequencies and severity of defects.

  • PDF

Vibration Characteristics of Stacked Piezoelectric Transducers (적층 압전 변환기의 진동 특성)

  • Kim, Dae Jong;Kim, Jin Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.199-206
    • /
    • 2015
  • This paper deals with the vibration characteristics of stacked transducers composed of piezoelectric discs, which are main elements of ultrasonic sensors or actuators. The stacked transducers were devised in the sense of natural frequencies. Two- or three-layer transducers were fabricated with piezoelectric discs of different diameters. The natural frequencies were determined by the finite element analysis and they were verified by comparing them with experimental results. It appeared that the natural frequencies of the stacked piezoelectric transducers include the natural frequencies of the constituent piezoelectric discs and the natural frequencies caused by stacking. Based on these results, it would be possible to predict the vibration characteristics of the stacked piezoelectric transducers in a design process.