• Title/Summary/Keyword: Freezer Compartment

Search Result 5, Processing Time 0.016 seconds

A Study on the Heat Transfer Performance of an Energy-Nose Section in a Household Refrigerator-Freezer (가정용 냉장고의 에너지 노즈부 열전달 특성에 관한 연구)

  • Lee, Moo-Yeon;Lee, Dong-Yeon;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.574-580
    • /
    • 2007
  • The objective of this article is to present an analysis of all heat transfer paths through the energy nose under closed door conditions when refrigeration system of household refrigerator-freezer is operating on. Both experimental and numerical methods are suggested as a means of determining the overall energy nose load amount as well as the load due to each pathway such as mullion section and F and R sides of the household refrigerator-freezer. In other words, all loads determined in this article are just energy nose and not the loads seen by the refrigeration system. We suggest good ideas for improving the heat transfer losses such as conduction and convection through the energy nose. As we can be known from the experimental test results, it is effective to prevent the heat loss of a mullion section. And energy efficiency is also decreased approximately 6% compared to that of a baseline sample test result. As we can be known from the Ansys 8.1 analysis, it is shown the steady state temperature distribution in figures from 6 to 8. And the direction of the heat flow through the energy nose section is also easily seen from that In conclusion, the article is focused on an energy nose section in household refrigerator-freezer for practical proposes which is the energy saving in a household refrigerator-freezer. And the method suggested may be applied to any make or model to aid in the search for high efficient energy nose section of household side by side refrigerator-freezer as well as top mounted refrigerator-freezer, commercial refrigerator and so on.

Evaluation of Vertical Displacement of Door of Built-in Bottom-Freezer Type Refrigerator by Structural Analysis (구조해석을 통한 하부냉동실형 빌트인 냉장고 도어의 처짐량 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • In this study, we developed a finite element model for the built-in bottom-freezer type refrigerator and then used the structural analysis method to analyze and evaluate the deflection of the doors. We tested the validity of the developed analytical model by measuring the deflection of the hinge when loads were applied to the upper and lower hinges of the refrigerating compartment and compared these with the analysis results. The comparison of the vertical displacement of the measured result and the analysis result showed an error ratio of up to 12.8%, which indicates that the analytical model is consistent. Using the analytical model composed of the cabinet, hinges and doors, we performed analyses for two cases: both doors closed, and the refrigerating door open. Since the maximum vertical displacement of the refrigerating compartment door (R-door) with the food load is smaller than the gap between the lower surface of the R-door and the upper surface of the freezer compartment door (F-door), it is judged that the R-door and the F-door do not contact when the doors are opened or closed. In addition, the analysis result showed that the difference between the vertical displacement at the hinge on the opposite side and the hinge side of the R-door is favorably smaller than the management criterion of the refrigerator manufacturer.

Simulation for Improvement of Temperature Distribution Inside Refrigerator (냉장고 고내 온도산포 개선에 관한 전산모사)

  • Gao, Jia-Chen;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.98-103
    • /
    • 2019
  • With the increasing need for environmental protection, it is particularly important to improve the energy saving and reliability of refrigerators. Generally, the cold air flowing into the freezer compartment transits to the bottom of the refrigerating compartment, which can lead to uneven temperature distribution. This paper proposes two design solutions for improving the temperature distribution problem. Of these, the optimal refrigeration design was selected and tested using Computational Fluid Dynamics (CFD) modeling and simulation. The results showed improved uniformity of the temperature distribution inside the refrigerator, thus benefitting food storage while reducing energy consumption.

Structural Analysis of Cabinet in Built-in Side-by-Side Refrigerator and Evaluation of Door Height Difference and Door Flatness Difference (빌트인 양문형 냉장고의 캐비닛 구조해석 및 도어 상하단차와 앞뒤단차의 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.30-36
    • /
    • 2018
  • Since the freezer compartment and the refrigerating compartment are located side by side in a side-by-side refrigerator, the problems of the door height difference (DHD) and door flatness difference (DFD) have been constantly raised. Deformation of the cabinet of a built-in side-by-side refrigerator under food and thermal loads was analyzed by the finite element software ANSYS. The DHD and DFD, occurring due to the deformation of the cabinet, evaluated. From the results of the analysis of the cabinet, the 3D CAD software CATIA was used to geometrically translate and rotate the freezing and refrigerating compartment doors, in consideration of the displacement of the hinge fastening point. Then, the coordinates of two points on the upper corner of the doors were determined, and the DHD and DFD were obtained. It found that the thermal load, occurring under normal operation conditions, decreases the door height difference, but increases the door flatness difference. Values of the analyzed DHD and DFD appear smaller than the acceptance criteria used by the refrigerator manufacturer.

Investigation of Internal Temperature Distribution in Domestic Refrigerators and Freezers (가정용 식품 냉장고와 냉동고의 내부 온도 분포 실태 조사)

  • Dong Bin Lee;Jong Eok Kim;Ja Yeong Lee;Sang Gu Kim;Sang Yun Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.373-380
    • /
    • 2023
  • This study surveyed and compared the temperature distribution in domestic refrigerators and freezers used in Korea to determine whether temperature varied according to the location of food storage. We selected 50 people to collect temperature data; among them, 25 measured the temperature of refrigerators, while the remaining measured the temperature of freezers. Consequently, the lowest and highest temperatures measured in domestic refrigerators were found to be -8.2℃ and 15.8℃, respectively, with an average temperature of 3.73℃. The temperature distribution based on internal location was: 5.06±1.69℃ for the door storage compartment, 4.18±1.19℃ for the inside wall surface, and 3.41±1.36℃ for the inner storage box. Significant temperature differences between the top and bottom were only identified at the door storage compartment (P<0.01). Further, the minimum and maximum temperatures measured in the freezer was -30.3℃ and 0.7℃, respectively, with an average temperature of -17.95℃. The temperature distribution based on location was: -17.19±1.68℃ for the door storage compartment, -17.81±1.07℃ for the inside wall surface, and -18.78±1.72℃ for the inside storage box. The results were similar to that of the refrigerator, with the lowest temperature in the inside storage box, and a significant temperature difference between the top and bottom noted only at the door (P<0.01). The maximum temperature difference (between locations) within the refrigerator and freezer was found to be 2.18 and 2.02℃, respectively. In conclusion, the temperature in the entire space was not constant; there were significant deviations at different storage locations. Therefore, public authorities should actively advise customers on the recommended storage locations for each food type. People will benefit from awareness about storage management, including avoiding storage of temperature-sensitive foods in door compartment.