• Title/Summary/Keyword: Freeze warning

Search Result 5, Processing Time 0.021 seconds

A Thermal Time-Driven Dormancy Index as a Complementary Criterion for Grape Vine Freeze Risk Evaluation (포도 동해위험 판정기준으로서 온도시간 기반의 휴면심도 이용)

  • Kwon, Eun-Young;Jung, Jea-Eun;Chung, U-Ran;Lee, Seung-Jong;Song, Gi-Cheol;Choi, Dong-Geun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Regardless of the recent observed warmer winters in Korea, more freeze injuries and associated economic losses are reported in fruit industry than ever before. Existing freeze-frost forecasting systems employ only daily minimum temperature for judging the potential damage on dormant flowering buds but cannot accommodate potential biological responses such as short-term acclimation of plants to severe weather episodes as well as annual variation in climate. We introduce 'dormancy depth', in addition to daily minimum temperature, as a complementary criterion for judging the potential damage of freezing temperatures on dormant flowering buds of grape vines. Dormancy depth can be estimated by a phonology model driven by daily maximum and minimum temperature and is expected to make a reasonable proxy for physiological tolerance of buds to low temperature. Dormancy depth at a selected site was estimated for a climatological normal year by this model, and we found a close similarity in time course change pattern between the estimated dormancy depth and the known cold tolerance of fruit trees. Inter-annual and spatial variation in dormancy depth were identified by this method, showing the feasibility of using dormancy depth as a proxy indicator for tolerance to low temperature during the winter season. The model was applied to 10 vineyards which were recently damaged by a cold spell, and a temperature-dormancy depth-freeze injury relationship was formulated into an exponential-saturation model which can be used for judging freeze risk under a given set of temperature and dormancy depth. Based on this model and the expected lowest temperature with a 10-year recurrence interval, a freeze risk probability map was produced for Hwaseong County, Korea. The results seemed to explain why the vineyards in the warmer part of Hwaseong County have been hit by more freeBe damage than those in the cooler part of the county. A dormancy depth-minimum temperature dual engine freeze warning system was designed for vineyards in major production counties in Korea by combining the site-specific dormancy depth and minimum temperature forecasts with the freeze risk model. In this system, daily accumulation of thermal time since last fall leads to the dormancy state (depth) for today. The regional minimum temperature forecast for tomorrow by the Korea Meteorological Administration is converted to the site specific forecast at a 30m resolution. These data are input to the freeze risk model and the percent damage probability is calculated for each grid cell and mapped for the entire county. Similar approaches may be used to develop freeze warning systems for other deciduous fruit trees.

Estimation of freeze damage risk according to developmental stage of fruit flower buds in spring (봄철 과수 꽃눈 발육 수준에 따른 저온해 위험도 산정)

  • Kim, Jin-Hee;Kim, Dae-jun;Kim, Soo-ock;Yun, Eun-jeong;Ju, Okjung;Park, Jong Sun;Shin, Yong Soon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • The flowering seasons can be advanced due to climate change that would cause an abnormally warm winter. Such warm winter would increase the frequency of crop damages resulted from sudden occurrences of low temperature before and after the vegetative growth stages, e.g., the period from germination to flowering. The degree and pattern of freezing damage would differ by the development stage of each individual fruit tree even in an orchard. A critical temperature, e.g., killing temperature, has been used to predict freeze damage by low-temperature conditions under the assumption that such damage would be associated with the development stage of a fruit flower bud. However, it would be challenging to apply the critical temperature to a region where spatial variation in temperature would be considerably high. In the present study, a phenological model was used to estimate major bud development stages, which would be useful for prediction of regional risks for the freeze damages. We also derived a linear function to calculate a probabilistic freeze risk in spring, which can quantitatively evaluate the risk level based solely on forecasted weather data. We calculated the dates of freeze damage occurrences and spatial risk distribution according to main production areas by applying the spring freeze risk function to apple, peach, and pear crops in 2018. It was predicted that the most extensive low-temperature associated freeze damage could have occurred on April 8. It was also found that the risk function was useful to identify the main production areas where the greatest damage to a given crop could occur. These results suggest that the freezing damage associated with the occurrence of low-temperature events could decrease providing early warning for growers to respond abnormal weather conditions for their farm.

Development of an AI-based Early Warning System for Water Meter Freeze-Burst Detection Using AI Models (AI기반 물공급 시스템내 동파위험 조기경보를 위한 AI모델 개발 연구)

  • So Ryung Lee;Hyeon June Jang;Jin Wook Lee;Sung Hoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.511-511
    • /
    • 2023
  • 기후변화로 동절기 기온 저하에 따른 수도계량기의 동파는 지속적으로 심화되고 있으며, 이는 계량기 교체 비용, 누수, 누수량 동결에 의한 2차 피해, 단수 등 사회적 문제를 야기한다. 이와같은 문제를 해결하고자 구조적 대책으로 개별 가정에서 동파 방지형 계량기를 설치할 수 있으나 이를 위한 비용발생이 상당하고, 비구조적 대책으로는 기상청의 동파 지도 알림 서비스를 활용하여 사전적으로 대응하고자 하나, 기상청자료는 대기 온도를 중심으로 제공하고 있기 때문에 해당서비스만으로는 계량기의 동파를 예측하는데 필요한 추가적인 다양한 변수를 활용하는데 한계가 있다. 최근 정부와 공공부문에서 22개 지역, 110개소 이상의 수도계량기함내 IoT 온도센서를 시범 설치하여 계량기 함내의 상태 등을 확인할 수 있는 사업을 수행했다. 전국적인 계량기 상태의 예측과 진단을 위해서는 추가적인 센서 설치가 필요할 것이나, IoT센서 설치 비용 등의 문제로 추가 설치가 더딘 실정이다. 본 연구에서는 겨울 동파 예방을 위해 실제 온도센서를 기반으로 가상센서를 구축하고, 이를 혼합한 하이브리드 방식으로 동파위험 기준에 따라 전국 동파위험 지도를 구축하였다. 가상센서 개발을 위해 독립변수로 위경도, 고도, 음·양지, 보온재 여부 및 기상정보(기온, 강수량, 풍속, 습도)를 활용하고, 종속변수로 실제 센서의 온도를 사용하여 기계학습 모델을 개발하였다. 지역 특성에 따라 정확한 모델을 구축하기 위해 위치정보 및 보온재여부 등의 변수를 활용하여 K-means 방법으로 군집화 하였으며, 각 군집별로 3가지의 기계학습 회귀모델을 적용하였다. 최적의 군집 수를 검토한 결과 4개가 적정한 것으로 판단되었다. 군집의 특성은 지역별 구분과 유사한 패턴을 보이며, 모든 군집에서 Gradient Boosting 회귀모델을 적용하는 것이 적합한 것으로 나타났다. 본 연구에서 개발한 모델을 바탕으로 조건에 따라 동파 예측 알람서비스에 실무적으로 활용할 수 있도록 양호·주의·위험·매우위험 총 4개의 기준을 설정하였다. 실제 본 연구에서 개발된 알고리즘을 국가상수도정보 시스템에 반영하여 테스트 수행중에 있으며, 향후 지속 검증을 할 예정에 있다. 이를 통해 동파 예방 및 피해 최소화, 물절약 등 직간접적 편익이 기대된다.

  • PDF

Improving Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: I. Correction for Local Temperature under the Inversion Condition (기상청 동네예보의 영농활용도 증진을 위한 방안: I. 기온역전조건의 국지기온 보정)

  • Kim, Soo-Ock;Kim, Dae-Jun;Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.2
    • /
    • pp.76-84
    • /
    • 2013
  • An adequate downscaling of the official forecasts of Korea Meteorological Administration (KMA) is a prerequisite to improving the value and utility of agrometeorological information in rural areas, where complex terrain and small farms constitute major features of the landscape. In this study, we suggest a simple correction scheme for scaling down the KMA temperature forecasts from mesoscale (5 km by 5 km) to the local scale (30 m by 30 m) across a rural catchment, especially under temperature inversion conditions. The study area is a rural catchment of $50km^2$ area with complex terrain and located on a southern slope of Mountain Jiri National Park. Temperature forecasts for 0600 LST on 62 days with temperature inversion were selected from the fall 2011-spring 2012 KMA data archive. A geospatial correction scheme which can simulate both cold air drainage and the so-called 'thermal belt' was used to derive the site-specific temperature deviation across the study area at a 30 m by 30 m resolution from the original 5 km by 5 km forecast grids. The observed temperature data at 12 validation sites within the study area showed a substantial reduction in forecast error: from ${\pm}2^{\circ}C$ to ${\pm}1^{\circ}C$ in the mean error range and from $1.9^{\circ}C$ to $1.6^{\circ}C$ in the root mean square error. Improvement was most remarkable at low lying locations showing frequent cold pooling events. Temperature prediction error was less than $2^{\circ}C$ for more than 80% of the observed inversion cases and less than $1^{\circ}C$ for half of the cases. Temperature forecasts corrected by this scheme may accelerate implementation of the freeze and frost early warning service for major fruits growing regions in Korea.

A Quantification Method for the Cold Pool Effect on Nocturnal Temperature in a Closed Catchment (폐쇄집수역의 냉기호 모의를 통한 일 최저기온 분포 추정)

  • Kim, Soo-Ock;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.176-184
    • /
    • 2011
  • Cold air on sloping surfaces flows down to the valley bottom in mountainous terrain at calm and clear nights. Based on the assumption that the cold air flow may be the same as the water flow, current models estimate temperature drop by regarding the cold air accumulation at a given location as the water-like free drainage. At a closed catchment whose outlet is blocked by man-made obstacles such as banks and roads, however, the water-like free drainage assumption is no longer valid because the cold air accumulates from the bottom first. We developed an empirical model to estimate quantitatively the effect of cold pool on nocturnal temperature in a closed catchment. In our model, a closed catchment is treated like a "vessel", and a digital elevation model (DEM) was used to calculate the maximum capacity of the cold pool formed in a closed catchment. We introduce a topographical variable named "shape factor", which is the ratio of the cold air accumulation potential across the whole catchment area to the maximum capacity of the cold pool to describe the relative size of temperature drop at a wider range of catchment shapes. The shape factor is then used to simulate the density profile of cold pool formed in a given catchment based on a hypsometric equation. The cold lake module was incorporated with the existing model (i.e., Chung et al., 2006), generating a new model and predicting distribution of minimum temperature over closed catchments. We applied this model to Akyang valley (i.e., a typical closed catchment of 53 $km^2$ area) in the southern skirt of Mt. Jiri National Park where 12 automated weather stations (AWS) are operational. The performance of the model was evaluated based on the feasibility of delineating the temperature pattern accurately at cold pool forming at night. Overall, the model's ability of simulating the spatial pattern of lower temperature were improved especially at the valley bottom, showing a similar pattern of the estimated temperature with that of thermal images obtained across the valley at dawn (0520 to 0600 local standard time) of 17 May 2011. Error in temperature estimation, calculated with the root mean square error using the 10 low-lying AWSs, was substantially decreased from $1.30^{\circ}C$ with the existing model to $0.71^{\circ}C$ with the new model. These results suggest the feasibility of the new method in predicting the site-specific freeze and frost warning at a closed catchment.