• Title/Summary/Keyword: Freeze fracturing

Search Result 5, Processing Time 0.026 seconds

A Freeze-fracture Study on the Odontoblast of Dental Pulp in the Rat Incisor (흰쥐 절치치수의 Odontoblast에 관한 Freeze-Fracture 연구)

  • Kim, Myung-Kook
    • Applied Microscopy
    • /
    • v.16 no.2
    • /
    • pp.1-13
    • /
    • 1986
  • The purpose of this study was to investigate the morphology and intercellular junctions of the odontoblast of dental pulp in the rat incisor by means of the freeze fracture electron microscopy. Twenty male Sprague-Dawley rats weighing $150{\sim}200g$ were used. After being anesthetized by an intraperitoneal injection of 0.5 ml sodium pentobarbital per kg in body weight(60 mg/ml) the animals were perfused with 2.5% glutaraldehyde-2% paraformaldehyde fixative in 0.1 M cacodylate buffer, pH 7.2 through the ascending aorta for one hour. The incisors were carefully extracted from the jaws and demineralized by suspending them in 0.1 M EDTA in 3% glutaraldehyde (pH 7.2) for two weeks. After demineralization, the specimens were obtained from the portion divided into five equal parts. For freeze-fracture replication, demineralized tissues were infiltrated for several hours with 10%, 25% glycerol in 0.1M cacodylate buffer as a cryoprotectant and then frozen in liquid Freon 22 and stored in liquid nitrogen. Fracturing and replication were done in Balzers BAF 400D high-vacuum freeze-fracture apparatus at $-120^{\circ}C$ under routine $5X10^{-7}$ Torr vacuum. The tissue was immediately replicated with platinum unidirectionally at $45^{\circ}$ angle and reinforced with carbon at $90^{\circ}$ angle unidirectionally or by using a rotary stage. The replication process was monitored by a quartz-crystal device. The replicas were immersed in 100% methanol overnight. The tissue was then digested from the replica by clorox (laundry bleach), placed into 5% EDTA, and washed repeatedly with distilled water. The replicas were picked up on 0.3% formvar-coated 75 mesh grids and examined in the JEOL 100B electron microscope. The results were as follows; 1. Both in thin sections and freeze-fracture replicas, three types of intercellular junctions were recognizable in the plasma membrane of odontoblast: gap junction, tight junction and desmosome-like junction. 2. The nuclear pores were evenly distributed over the nuclear envelope. The pore complex formed a ring about 70 nm in diameter. 3. Gap junctions were found between odontoblasts as well as odontoblasts and neighbouring pulp cells (fibroblast, subodontoblastic cell process, nerve-like fibre). Gap junctions, which were round, ellipsoid and pear-shaped and 600 nm in diameter, were observed in the odontoblast. 4. Numerous round and ellipsoid gap junctions could be frequently seen on the plasma membranes in cell body and apical part of the odontoblasts. On the P face, the junctions were recognized as a cluster of closely packed particles, measuring about 9 nm in diameter, and on the E face, the junctions were recognized as a shallow grooves.

  • PDF

Purification of the Vacuolar Arginine Transporter from Neurospora crassa (Neurospora crassa로부터 arginine transporter의 순수분리)

  • ;Weiss, R. L.
    • Korean Journal of Microbiology
    • /
    • v.27 no.2
    • /
    • pp.117-123
    • /
    • 1989
  • Radioactive N-$\alpha$-p-nitrobenzoxycarbonyl (NBZ)-L-[2,$3-^{3}$H] arginyl diazomethane was used as an affinity label for the vacuolar arginine transporter in Neurospora crassa. Vacuolar matrix proteins were removed by fracturing the membranes with freeze-thaw method in dry ice/ethanol bath. Vacuolar membrane proteins were then wasged with 500mM NaCl to remove ionically bound derivatives and peripheral membrane proteins from vacuolar membranes. After dissolved in 1% Titon X-100, dissolved vacuolar memvrane proteins were separated with molecular sieve column chromatography, anion and cation exchange chromatographies. The arginine transporter was purified giving the purification factor of 1136.

  • PDF

Some Observations on the Intercellular Junctions between the Hepatocytes in Fasting States as Revealed by Freeze Fracture Replica (기아가 간세포막결합장치에 미치는 영향에 관한 Freeze Fracture Replica법에 의한 관찰)

  • Ahn, Tae-Soon;Shin, Young-Chul
    • Applied Microscopy
    • /
    • v.25 no.2
    • /
    • pp.53-64
    • /
    • 1995
  • This study was designed to investigate the morphological alterations of zonula occludens, macula adherences and gap junctions between the hepatocytes in the fasting conditions. Animals (Sprague Dawley, $250{\sim}280g$) were divided into two groups: normal and fasting. The latter were fasted for eight days prior to sampling. Liver tissues were sectioned and replicated after freeze fracturing for the transmission electron microscopy. In the normal rat liver, the interhepatocellular space at the area of some zonula occludens appeared to be widened in thin sections. On the freeze fracture replicas., the zonula occludens appeared as an anastomosing network of $2{\sim}4$ strands or grooves on P or E faces. Free ends and fragments of the strands were observed. In the rat fasted for eight days, the hepatocytes were diminished in size and the organelles were decreased in number and size. The intercellular space was wide at many areas of zonula occludens in thin section. On the freeze fracture replicas, the zonula occludens showed diminution or disappearence of anastomosing network of strands or grooves. Free ends and small fragments of the strands or grooves were frequently encountered. The macula adherens was markedly increased in number in thin sections, although they could not be found on the freeze fracture replicas. The gap junctions were increased in number in thin sections. Small aggregations of the intramembranous particles appeared with larger ones on the freeze fracture replica. The evidences may suggest the followings: (1) The disassembly of zonula occludens in the fasting states is led from the diminished mechanical stress on the luminal surface of bile canaliculus with the impaired secretion of bile components from the hepatocytes. (2) The increase of macula adherens is necessary to maintain the liver parenchyma integrity in the fasting state which leads the hepatocyte to be diminished and finally the intercellular space to be separated. (3) The rise in both number and size of gap junctions is owing to the need of increasing intercellular communication between the hepatocytes during the fasting. (4) The alteration of zonula occludens is easily led by the physiological condition of hepatocytes even in the normal ones.

  • PDF

Cryo-SEM Methodology of Arabidopsis thaliana Stem Using High-Pressure Freezing (고압동결고정을 이용한 애기장대 줄기의 cryo-SEM 분석법)

  • Choi, Yun-Joung;Lee, Kyung-Hwan;Je, A-Reum;Chae, Hee-Su;Jang, Ji-Hoon;Lee, Eun-Ji;Kweon, Hee-Seok
    • Applied Microscopy
    • /
    • v.42 no.2
    • /
    • pp.111-114
    • /
    • 2012
  • The scanning electron microscopy is an ideal technique for examining plant surface at high resolution. Most hydrate samples, however, must be fix and dehydrate for observation in the scanning electron microscope. Because the microscopes operate under high vacuum, most specimens, especially biological samples, cannot withstand water removal by the vacuum system without morphological distortion. Cryo-techniques can observe in their original morphology and structure without various artifacts from conventional sample preparation. Rapid cooling is the method of choice for preparing plant samples for scanning electron microscopy in a defined physiological state. As one of cryo-technique, high-pressure freezing allows for fixation of native non-pretreated samples up to $200{\mu}M$ thick and 2 mm wide with minimal or no ice crystal damage for the freezing procedure. In this study, we could design to optimize structural preservation and imaging by comparing cryo-SEM and convention SEM preparation, and observe a fine, well preserved Arabidopsis stem's inner ultrastructure using HPF and cryo-SEM. These results would suggest a useful method of cryo-preparation and cryo-SEM for plant tissues, especially intratubule and vacuole rich structure.

Development of mcyB-specific Ultra-Rapid Real-time PCR for Quantitative Detection of Microcystis aeruginosa (Microcystis aeruginosa의 정량을 위한 mcyB 특이 초고속 실시간 유전자 증폭법의 개발)

  • Jung, Hyunchul;Yim, Byoungcheol;Lim, Sujin;Kim, Byounghee;Yoon, Byoungsu;Lee, Okmin
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.46-56
    • /
    • 2018
  • A mcyB-specific Ultra-Rapid quantitative PCR was developed for the quantitative detection of Microcystis aeruginosa, which is often a dominant species in green tide. McyB-specific UR-qPCR was optimized under extremely short times of each step in thermal cycles, based on the specific primers deduced from the mcyB in microcystin synthetase of M. aeruginosa. The M. aeruginosa strain KG07 was used as a standard for quantification, after the microscopic counting and calculation by mcyB-specific UR-qPCR. The water samples from the river water with the Microcystis outbreak were also measured by using both methods. The $1.0{\times}10^8$ molecules of mcyB-specific DNA was recognized inner 4 minutes after beginning of UR-qPCR, while $1.0{\times}10^4$ molecules of mcyB-specific templates was detected inner 7 minutes with quantitative manner. From the range of $1.0{\times}10^2$ to $1.0{\times}10^8$ initial molecules, quantification was well established based on $C_T$ using mcyB-specific UR-qPCR (Regression coefficiency, $R^2=0.9977$). Between the numbers of M. aeruginosa cell counting under microscope and calculated numbers using mcyB-specific UR-qPCR, some differences were often found. The reasons for these differences were discussed; therefore, easy compensation method was proposed that was dependent on the numbers of the cell counting. Additionally, to easily extract the genomic DNA (gDNA) from the samples, a freeze-fracturing of water-sample using liquid nitrogen was tested, by excluding the conventional gDNA extraction method. It was also verified that there were no significant differences using the UR-qPCR with both gDNAs. In conclusion, the mcyB-specific UR-qPCR that we proposed would be expected to be a useful tool for rapid quantification and easy monitoring of M. aeruginosa in environmental water.