• Title/Summary/Keyword: Freely falling

Search Result 23, Processing Time 0.031 seconds

Numerical Study on the Motion Characteristics of a Freely Falling Two-Dimensional Circular Cylinder in a Channel (채널 내 자유 낙하하는 2차원 원형 실린더의 운동 특성에 관한 수치적 연구)

  • Jeong, Hae-Kwon;Yoon, Hyun-Sik;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.495-505
    • /
    • 2009
  • A two-dimensional circular cylinder freely falling in a channel has been simulated by using immersed boundary - lattice Boltzmann method (IB-LBM) in order to analyze the characteristics of motion originated by the interaction between the fluid flow and the cylinder. The wide range of the solid/fluid density ratio has been considered to identify the effect of the solid/fluid density ratio on the motion characteristics such as the falling time, the transverse force and the trajectory in the streamwise and transverse directions. In addition, the effect of the gap between the cylinder and the wall on the motion of a two-dimensional freely falling circular cylinder has been revealed by taking into account a various range of the gap size. As the cylinder is close to the wall at the initial dropping position, vortex shedding in the wake occurs early since the shear flow formed in the spacing between the cylinder and the wall drives flow instabilities from the initial stage of freely falling. In order to consider the characteristics of transverse motion of the cylinder in the initial stage of freely falling, quantitative information about the cylinder motion variables such as the transverse force, trajectory and settling time has been investigate.

Numerical Analysis of Two-Dimensional Motion of a Freely Falling Circular Cylinder in an Infinite Fluid (무한 유체에서 자유 낙하하는 원형 실린더의 2차원 운동에 관한 수치해석)

  • Namkoong, Kak;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.713-725
    • /
    • 2004
  • The two-dimensional motion of a freely falling circular cylinder in an infinite fluid is investigated numerically using combined formulation. The effect of vortex shedding on the motion of a freely falling cylinder is clearly seen: as the streamwise velocity of the cylinder increases due to gravity, the periodic vortex shedding induces a periodic motion of the cylinder. This motion in turn affects the flow field, which is manifested by the generation of the angular velocity vector of the cylinder parallel to the cross product of the gravitational acceleration vector and the transverse velocity vector of the cylinder. A correlation of St-Re relationship for a freely falling circular cylinder is drawn from the present results. The Strouhal number for a freely falling circular cylinder is found to be smaller than that for a fixed circular cylinder when the two Reynolds numbers based on the streamwise terminal velocity of a freely failing circular cylinder and the free stream velocity of a fixed one are the same. From "thought experiments", it is shown that the transverse motion of the cylinder plays a crucial role in reducing the Strouhal number and has an effect of reducing the Reynolds number from the viewpoint of the pressure coefficient. The mechanism of this reduction in the Strouhal number is revealed by the fact that the freely falling cylinder experiences a smaller lift force than the fixed one due to the transverse motion resulting in the retardation of the vortex shedding.

Numerical study on motion characteristics of a free falling two-dimensional circular cylinder in a channel using an Immersed Boundary - Lattice Boltzmann Method (가상경계 격자 볼츠만 법을 이용한 채널 내 자유 낙하하는 2차원 원형 실린더의 운동 특성)

  • Jeong, Hae-Kwon;Ha, Man-Yeong;Yoon, Hyun-Sik;Kim, Sung-Jool
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2489-2494
    • /
    • 2008
  • The two-dimensional circular cylinder freely falling in a channel has been simulated by using Immersed boundary - lattice Boltzmann method in order to analyze the characteristics of motion originated by the interaction between the fluid and the solid. The wide range of the solid/fluid density ratio has been considered to identify the effect of the solid/fluid density ratio on the motion characteristics such as the falling time, the terminal velocity and the trajectory in the vertical and horizontal directions. In addition, the effect of the gap between the cylinder and the wall on the motion of two-dimensional circular cylinder freely falling has been revealed by taking into account a various range of the gap size. The Reynolds number in terms of the terminal velocity is diminished as the cylinder becomes close to the wall at the initial dropping position, since the repulsive force induced between the cylinder and wall constrains the vertical motion. Quantitative information about the flow variables such as the pressure coefficient and vorticity on the cylinders is highlighted.

  • PDF

Impact Analysis of Freely Falling Cellular Phone (자유낙하에 의한 휴대폰의 충격 해석)

  • Kang, Sung-Soo;Kim, Jong-Su;Seol, Gyun-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.963-968
    • /
    • 2013
  • In this study, we carried out a structural analysis for determining the stresses acting on the tempered glass of a freely falling cellular phone using ANSYS 13.0, commercial finite element code. We designed a phone heavier than any contemporary cellular phone and performed finite element analysis using the falling speed at a height of 104 cm, which is equal to of the average leg length of Koreans. By determining the maximum stress acting on the phone's tempered glass and frame, we identified the location of large deformation. Furthermore, we evaluated the maximum/minimum equivalent stress and deformation of the reinforced glass and frame as functions of time.

Flow Structures Around a Freely-falling, Rectangular Cylinder (자유 낙하하는 사각 실린더 주위의 유동 구조)

  • Jeon, Chung-Ho;Lee, Chang-Yeol;Yoon, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.8-15
    • /
    • 2010
  • The flow around a two-dimensional, rectangular cylinder that is freely falling in a channel was simulated using the immersed boundary method with direct forcing to determine the interactions between the fluid and the structure. The results of the present study were in good agreement with previous experimental results. Regardless of the H/L ratio (where H and L are the height and width of the rectangular cylinder, respectively), the flow structures had essentially the same pattern as the two symmetrical circulations that form about the horizontal center of the cylinder, with those centers located at each lateral position near the wake. When the cylinder approaches very close to the bottom, a jet-like flow appeared between the bottom of the rectangular cylinder and the channel. When the jet-like flow goes through the channel, surrounding fluids are sucked into this jet, forming the secondary vortices.

STUDY ON THE BEHAVIOR OF NEEDLES AND SPRINGS FALLING FREELY IN A VISCOUS FLUID (점성 유체중에 자유낙하 하는 니들과 스프링의 거동에 관한 연구)

  • Gowtham, B.;Suh, Y.K.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.30-39
    • /
    • 2014
  • We report in this paper the analysis of the motion of a needle and a spring in a viscous fluid under the influence of gravitational force. Lateral shift as well as vertical motion of a needle falling in a viscous fluid has been observed from a simple experiment. We also observed the combined rotation and translation of a falling spring. The trajectory and velocity of the falling needle and the spring were obtained by using an image processing technique. We also conducted numerical simulation for both problems. For the falling-needle problem, we employed a theory; but it turns out that significant correction is required for the solutions to match the numerical and experimental data. For the falling spring problem various theoretical formula were tested for their justification, but none of the existing theories can successfully predict the numerical and experimental results.

Numerical study of a freely falling rigid sphere on water surface (수면 위 자유 낙하 및 충돌하는 강체 구의 수치해석 연구)

  • Ku, BonHeon;Pandey, Deepak Kumar;Lim, Hee-Chang
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.15-25
    • /
    • 2021
  • Numerical studies on the hydrodynamics of a freely falling rigid sphere in bounded and unbounded water domains are presented having investigation on the drag coefficient, normalized velocity, surface pressure and skin friction coefficient as a function of time. Two different conditions of the bounded and unbounded domains have been simulated by setting the blockage ratio. Four cases of bounded domains (B.R. = 1%, 25%, 45%, 55%, 65% and 75%) have been taken, whereas the unbounded domain has been considered with 0.01%. In the case of the bounded domain (higher values of B.R.), a substantial reduction in normalized velocity and increase in the drag coefficient have been found in presence of the bounded domain. Moreover, bounded domains also yield a significant increase in the pressure coefficient when the sphere is partially submerged, but the insignificant effect is found on the skin friction coefficient. In the case of the unbounded domain, a significant reduction in normalized velocity occurs with a decrease in Reynolds number (Re) and also increase in the drag coefficient.

Maximum Height and Velocity of Jumping Car in The Air (공중으로 점프한 차량의 최대 높이 및 속도)

  • Shin, Seong-Yoon;Lee, Hyun-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.10
    • /
    • pp.55-60
    • /
    • 2012
  • An free-fall object is received only force of gravity. Movement that only accept gravity is free-fall movement, and a free-falling object is free falling body. In other words, free falling body is only freely falling objects under the influence of gravity, regardless of the initial state of objects movement. In this paper, we assume, ignoring the resistance of the air, and the free-fall acceleration by the height does not change within the range of the short distance in the vertical direction. Under these assumptions, we can know about time and maximum height to reach the peak point from jumping vertically upward direction, time and speed of the car return to the starting position, and time and speed when the car fall to the ground. It can be measured by jumping degree and risk of accident from car or motorcycle in telematics.

Detection of Aesthetic Measure from Stabilized Image and Video (정지영상과 동영상에서 미도의 추출)

  • Rhee, Yang-Won;Choi, Byeong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.33-38
    • /
    • 2012
  • An free-fall object is received only force of gravity. Movement that only accept gravity is free-fall movement, and a free-falling object is free falling body. In other words, free falling body is only freely falling objects under the influence of gravity, regardless of the initial state of objects movement. In this paper, we assume, ignoring the resistance of the air, and the free-fall acceleration by the height does not change within the range of the short distance in the vertical direction. Under these assumptions, we can know about time and maximum height to reach the peak point from jumping vertically upward direction, time and speed of the car return to the starting position, and time and speed when the car fall to the ground. It can be measured by jumping degree and risk of accident from car or motorcycle in telematics.

An experimental study on the evaporation of paraffin family fuel droplet under high temperature and high pressure (고온 고압기류중을 비행하는 파라핀계 연료액적의 증발에 관한 연구)

  • ;川口修
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2125-2131
    • /
    • 1991
  • Evaporation rate constant, obtained by in this experimental study, of freely falling liquid fuel droplet on the condition of hot and pressurized environment are converted to critical evaporation constant according to Eq. of Ranz and Marshall. Critical evaporation constant, on constant environment pressuire, actively increase almost linearly with environment temperature increasing, but, on constant temperature, increases more or less with pressure increasing. Multycomponent droplet mixed with the fine fuel having a different of boiling point evaporate in order to boiling point, and each evaporation rate constant of mixed fuel equal to each fuel.