• Title/Summary/Keyword: Free-Stream Turbulence

Search Result 78, Processing Time 0.023 seconds

Sensitivity analysis of transonic flow past a NASA airfoil/wing with spoiler deployments

  • AKuzmin, lexander
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.232-240
    • /
    • 2014
  • Transonic flow past a NASA SC(2)-0710 airfoil with deployments of a spoiler up to $6^{\circ}$ was studied numerically. We consider angles of attack from $-0.6^{\circ}$ to $0.6^{\circ}$ and free-stream Mach numbers from 0.81 to 0.86. Solutions of the unsteady Reynolds-averaged Navier-Stokes equations were obtained with a finite-volume solver using several turbulence models. Both stationary and time-dependent deployments of the spoiler were examined. The study revealed the existence of narrow bands of the Mach number, angle of attack, and spoiler deflection angle, in which the flow was extremely sensitive to small perturbations. Simulations of 3D flow past a swept wing confirmed the flow sensitivity to small perturbations of boundary conditions.

A Computational Study of Aerodynamic Characteristics of Spinning Sphere (회전하는 구의 공력특성에 수치해석적 연구)

  • Deshpande, S.V.;Lee, Y.K.;Kim, H.D.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.223-226
    • /
    • 2006
  • Computational Study of a sphere subjected to free stream flow and simultaneously subjected to spinning motion is carried out. Three dimensional compressible Navier-Stokes equations are solved using fully implicit finite volume scheme. SST(Shear Stress Transport) $k-{\omega}$ turbulence model is used. Aerodynamic characteristics being affected are studied. Validation of the numerical process is done for the no spin condition. Variation of drag coefficient and shock wave strength with increase in spinning rate is reported. Changes in the wake region of the sphere with respect to spinning speed are also observed.

  • PDF

Measurement of Heat (Mass) Transfer Coefficient on the Blade Surfaces of a Linear Turbine Rotor Cascade With a Four-Axis Naphthalene Profile Measuring System (4-축 나프탈렌 승화깊이 측정시스템을 이용한 터빈 블레이드 표면에서의 열(물질)전달계수 측정)

  • Kwon, Hyun-Goo;Lee, Sang-Woo;Park, Byung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.42-47
    • /
    • 2001
  • The heat (mass) transfer characteristics on the blade surface of a first-stage turbine rotor cascade for power generation has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is successfully developed for the measurements of the local heat (mass) transfer coefficient on the curved blade surface. The experiment is carried out at the free-stream Reynolds number and turbulence intensity of $2.09\times10^5$ and 1.2%. The results on the blade surfaces show that the local heat (mass) transfer on the suction surface is strongly influenced by the endwall vortices, but that on the pressure surface shows a nearly two-dimensional nature. The pressure surface has a more uniform distribution of heat load than the suction one.

  • PDF

Validation of Aero and Aero-Acoustics simulation for HAWT Model through LBM based technology

  • Senthooran, Sivapalan;Kandasamy, Satheesh;Balasubramanian, Ganapathi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.340-341
    • /
    • 2010
  • A computational study to capture the flow around a floor mounted greenhouse shaped HAWT model was performed using the commercial software PowerFLOW 4.2b. The simulation kernel of this software is based on the numerical scheme known as the Lattice Boltzmann Method (LBM), combined with an RNG turbulence model. Simulations were performed at 60 and 140 km/h free stream air speeds. Selective results from these computational simulations are presented to show the capability of this numerical approach to predict the aerodynamics and aeroacoustics characteristics of the 3-D flow field around the HAWT model.

  • PDF

Three-Dimensional Computations of Rocket Exhaust Plume (로켓 배기플룸에 관한 3차원 수치해석)

  • Kim Y.-M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.71-76
    • /
    • 1999
  • The base flow regions of a three-body sounding rocket containing multiple exhaust plumes were numerically investigated in three dimensions for a free stream Mach number of 2.7 at flight altitude 18.5 km. The flowfields were calculated using the full compressible Navier-Stokes equations with an one-equation turbulence model of Baldwin-Earth. The present calculations were executed based upon a chemically frozen, single perfect gas model assumption. Due to the symmetry of the three-body rocket of each single nozzle, only one fourth of the computational domain was considered for the analysis. The results indicate that a babe heating effect is not considerable due to the small expansion of the plumes. In the base, however, a low speed recirculating flow dominates the region.

  • PDF

Experimental study on the effect of flat-plate wake on mass transfer about a cylinder in crossflow (평판 후류가 원통 표면의 물질전달에 미치는 영향에 대한 실험적 연구)

  • 맹두진;김형수;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2779-2786
    • /
    • 1994
  • This study presents an experimental investigation of the effect of the wake on mass transfer about a circular cylinder in crossflow. The flat-plate wake was generated by merging two mirror images of turbulent boundary layers that were well developed along the both sides of flat plate with a sharp trailing edge. The velocity field was measured by a hot-wire system and the mass transfer rate by a naphthalene sublimation method. The mixing and developing stages of the wake were addressed to identify flow conditions. The mass transfer effects of different developing stages of the wake was discussed in detail. It is noted that a local maximum appears not at the front stagnation point but at a point a little downstream when the cylinder is located in the nearwake region and much more elevated mass transfer rate is obtained compared to effect of free-stream turbulence.

Laminar-Turbulent Transition Research and Control in Near-wall Flow

  • Boiko A.V.;Chun H.H.
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.4
    • /
    • pp.10-16
    • /
    • 2004
  • A response of a swept wing boundary layer to a single free-stream stationary axial vortex of a limited spanwise extent is considered as an example of typical problems that one can find in laminar-turbulent transition research and control. The response is dominated by streamwise velocity perturbations that grow quasi-exponentially downstream. It is shown that the formation of the boundary layer disturbance occurs for the most part close to the leading edge. The disturbance represents itself a wave packet consisted of the waves with characteristics specific for cross-flow instability. However, an admixture of growing disturbances whose origin can be attributed to transient effects and to a distributed receptivity mechanism is also identified.

Measurement of Wall Shear Stress in Transitional Boundary Layer on a Flat Plate Using Computational Preston Tube Method (CPM을 이용한 평판위 천이경계층에서 벽 마찰응력의 계측)

  • 전우평;강신형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.240-250
    • /
    • 1995
  • A CPM (computational preston tube method) was developed to measure wall shear stress in a transitional boundary layer on a flat plate using Preston tubes. Correlation for the displacement factor of Preston tubes was improved for a CPM to be used in the transitional boundary layer. The distribution of skin-friction coefficient was reasonably predicted in the uniform free stream of 3.1% turbulence intensity. Reasonable and accurate estimation of displacement factor of Preston tubes was found to be of crucial importance for the CPM, especially in the laminar boundary layer. The mean velocity profiles of the boundary layer on the plate were also measured and presented.

A Drag and Flow Characteristics around the Hybrid Projectile (하이브리드탄의 항력 및 유동해석)

  • 이상길;이동현
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.23-34
    • /
    • 2000
  • Three dimensional, compressible, mass weighted averaging of Favre, Navier-Stokes system with k-$\varepsilon$ turbulence, is numerically discretized to compute three dimensional multiple jet interaction flow fields for a hybrid projectile containing three rocket motors in the ogive section. Numerical flow field computations have been made for angled nose jets and rockets at supersonic speed using multiblock structured grid. The jet conditions include very high jet to free stream pressure ratio and high temperature. It is shown that the strength of nozzle stagnation pressure affects the flow field near the side nozzle and the high stagnation pressure increases total amount of drag by a few percent. However, minor drag loss due to the pressure drag might be fully overcomed by an additional axial thrust. The results of present study can be applied for the design of future hybrid projectile.

  • PDF

A Study on the Convective Heat Transfer in the Turbine Cascade for the Free-Stream Turbulence levels (자유흐름 난류 강도 변화에 대한 터빈 블레이드의 대류 열전달에 관한 연구)

  • 심재경;전승배;황민기;임진식
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.42-42
    • /
    • 2000
  • 선형 터빈 익렬에 유입되는 자유흐름 난류 강도의 변화에 따른, 터빈 블레이드에서의 대류 열전달 현상에 대한 연구를 수행하였다. 익렬은 5개의 볼레이드를 선형으로 배치하여 구성하였으며, 현의 길이에 근거한 레이놀즈 수는 2.5${\times}$$10^5$, 3.5${\times}$$10^5$ 이다. 자유 흐름의 난류 강도는 익렬의 도입부에 설치된 격자의 형상에 따라 1.3%, 3.7%, 7.0%, 7.8%의 값을 나타내었다. 자유흐름의 난류강도는 정온 열선유속계로 측정하였으며, 블레이드 표면 온도 분포는 열전대를 사용하여 측정하고, 금속박판을 사용하여 균일한 열유속을 공급하였다.(중략)

  • PDF