• Title/Summary/Keyword: Free standing

Search Result 254, Processing Time 0.029 seconds

Experimental validation of the seismic analysis methodology for free-standing spent fuel racks

  • Merino, Alberto Gonzalez;Pena, Luis Costas de la;Gonzalez, Arturo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.884-893
    • /
    • 2019
  • Spent fuel racks are steel structures used in the storage of the spent fuel removed from the nuclear power reactor. Rack units are submerged in the depths of the spent fuel pool to keep the fuel cool. Their free-standing design isolates their bases from the pool floor reducing structural stresses in case of seismic event. However, these singular features complicate their seismic analysis which involves a transient dynamic response with geometrical nonlinearities and fluid-structure interactions. An accurate estimation of the response is essential to achieve a safe pool layout and a reliable structural design. An analysis methodology based on the hydrodynamic mass concept and implicit integration algorithms was developed ad-hoc, but some dispersion of results still remains. In order to validate the analysis methodology, vibration tests are carried out on a reduced scale mock-up of a 2-rack system. The two rack mockups are submerged in free-standing conditions inside a rigid pool tank loaded with fake fuel assemblies and subjected to accelerations on a unidirectional shaking table. This article compares the experimental data with the numerical outputs of a finite element model built in ANSYS Mechanical. The in-phase motion of both units is highlighted and the water coupling effect is detailed. Results show a good agreement validating the methodology.

Review of Seismic Analysis Method for Free Standing High Density Spent Fuel Racks of PWR Plant (가압경수형 발전소 자립형 고밀도 핵연료 저장랙의 지진해석 방법에 대한 검토)

  • 신태명;김범식;손갑헌
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.183-190
    • /
    • 1994
  • The paper provides a review of the analysis methods currently being used to perform seismic analysis of free standing high density spent fuel storage racks for PWR. On the basis of the analysis techniques obtained by KAERI from the design experience of Yonggwang unit 3&4 and Ulchin unit 3&4, the analysis procedure and modeling methods are discussed. The analysis of free standing fuel racks requires consideration of complex phenomena such as hydrodynamic coupling, impact through gap between fuel assembly and poison box and racks, frictional effect, rigid body sliding and tipping and etc. The present modeling of these factors is reviewed in comparison with the recommendation of regulatory group. Further improvement of analysis method and the current issues for the development are discussed.

  • PDF

Preliminary optimal configuration on free standing hybrid riser

  • Kim, Kyoung-Su;Choi, Han-Suk;Kim, Kyung Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.250-258
    • /
    • 2018
  • Free Standing Hybrid Riser (FSHR) is comprised of vertical steel risers and Flexible Jumpers (FJ). They are jointly connected to a submerged Buoyancy Can (BC). There are several factors that have influence on the behavior of FSHR such as the span distance between an offshore platform and a foundation, BC up-lift force, BC submerged location and FJ length. An optimization method through a parametric study is presented. Firstly, descriptions for the overall arrangement and characteristics of FSHR are introduced. Secondly, a flowchart for optimization of FSHR is suggested. Following that, it is described how to select reasonable ranges for a parametric study and determine each of optimal configuration options. Lastly, numerical analysis based on this procedure is performed through a case study. In conclusion, the relation among those parameters is analyzed and non-dimensional parametric ranges on optimal arrangements are suggested. Additionally, strength analysis is performed with variation in the configuration.

CFD simulation of vortex-induced vibration of free-standing hybrid riser

  • Cao, Yi;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.195-223
    • /
    • 2017
  • This paper presents 3D numerical simulations of a Free Standing Hybrid Riser under Vortex Induced Vibration, with prescribed motion on the top to replace the motion of the buoyancy can. The model is calculated using a fully implicit discretization scheme. The flow field around the riser is computed by solving the Navier-Stokes equations numerically. The fluid domain is discretized using the overset grid approach. Grid points in near-wall regions of riser are of high resolution, while far field flow is in relatively coarse grid. Fluid-structure interaction is accomplished by communication between fluid solver and riser motion solver. Simulation is based on previous experimental data. Two cases are studied with different current speeds, where the motion of the buoyancy can is approximated to a 'banana' shape. A fully three-dimensional CFD approach for VIV simulation for a top side moving Riser has been presented. This paper also presents a simulation of a riser connected to a platform under harmonic regular waves.

Effect of Hydrogen Plasma Treatment on the Photoconductivity of Free-standing Diamond Film (다이아몬드막의 광전도성에 관한 수소 플라즈마 표면 처리의 효과)

  • Sung-Hoon, Kim
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.337-350
    • /
    • 1999
  • Thick diamond film having ~700${\mu}{\textrm}{m}$ thickness was deposited on polycrystalline molybdenum (Mo) substrate using high power (4kW) microwave plasma enhanced chemical vapor deposition (MPECVD) system. We could achieve free-standing diamond film via detaching as-deposited diamond film from the substrate by rapid cooling them under vacuum. We investigated the variation of photoconductivity after exposing the film surface to either oxygen or hydrogen plasma. At as-grown state, the growth side (the as-grown surface of the film) showed noticeable photoconductivity. The oxygen plasma treatment of this side led to the insulator. After exposing the film surface to hydrogen plasma, on the other hand, we could observe the reappearing of photoconductivity at the growth side. Based on these results, we suggest that the hydrogen plasma treatment may enhance the photoconductivity of free-standing diamond film.

  • PDF

Influence of Pile Cap On The Behaviors of End Bearing Pile Groups (말뚝캡이 선단지지 무리말뚝의 지지거동에 미치는 영향)

  • 최영석;이수형;정충기;김명모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.245-252
    • /
    • 2000
  • Model tests on free standing pile groups and piled footings with varying a pile spacing in two layered soils are carried out. The influence of pile cap on the behaviors of end bearing pile groups is analyzed by comparing the bearing behavior in piled footings with those in a single pile, a shallow footing(cap alone) and free standing pile groups. From the test results, it is found that the bearing characteristics of cap-soil-pile system are related with load levels and pile spacings. Before yield, the bearing resistance by cap is not fully mobilized, however, as the applied load increases, the bearing resistance of cap approaches to that of cap alone and settlement hardening occurs after yield due to the compaction caused by the contact pressure between cap and soil. By the cap-soil-pile interaction, shaft friction and point resistance of piles considerably increase with dependency of pile spacings. In two layered soil, the increasing effect of dilatancy in dense sandy soil adjacent to pile tips, increases the point resistance of pile.

  • PDF

Effect of hydrogen plasma treatment on the photoconductivity of free-standing diamond film

  • Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.441-445
    • /
    • 1999
  • Thick diamond film having $~700\mu\textrm{m}$ thickness was deposited on polycrystalline molybdenum(Mo) substrate using high power (4 kW) microwave plasma-enhanced chemical vapor depostion (MPECVD) system. We could achieve free-standing diamond film via detaching as-deposited diamond film from the substrate by rapid cooling them under vacuum. We investigated the variation of photoconductivity after exposing the film surface to either oxygen or hydrogen plasma. At as-grown state, the growth side (the as-grown surface of the film) showed noticeable photoconcuctivity. The oxygen plasma treatment of this side led to the insulator. After exposing the film surface to hydrogen plasma, on the other hand, we could observe the reappearing of photoconductivity at the growth side. Based on these results, we suggest that the hydrogen plasma treatment may enhance the photoconductivity of free-standing diamond film.

  • PDF

Patterned free-standing diamond field emitters for iarge area field emission display applications

  • Kim, Sung-Hoon
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.10-15
    • /
    • 1999
  • Using micro-wells on the Mo substrate, we could obtain various tubular-volcano-types of free-standing diamond field emitters by depositing a diamond film detaching the film and turning the film upside down. The field emission characteristics of these structures were investigated as a function of size, shape and the number density of the tubular-volcano-type diamond field emitters. The field emission characteristics, especially the current density, were greatly enhanced with increasing the number density of the tubular-volcano-type diamond field emitters on the Mo substrate. Based on these results, we suggest that the reduction of the well size can give better field emission characteristics by the increase in the number density of the tubular-volcano-type diamond field emitters. Finally, we suggest the feasibility of fabricating a large-area field emission display using our patterned tubular-volcano-type free-standing diamond field emitters.

  • PDF

Fabrication and Characterization of Optically Encoded Porous Silicon Smart Particles

  • Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.7 no.4
    • /
    • pp.221-226
    • /
    • 2014
  • Optically encoded porous silicon smart particles were successfully fabricated from the free-standing porous silicon thin films using ultrasono-method. DBR PSi was prepared by an electrochemical etch of heavily doped $p^{{+}{+}}$-type silicon wafer. DBR PSi was prepared by using a periodic pseudo-square wave current. The surface-modified DBR PSi was prepared by either thermal oxidation or thermal hydrosilylation. Free-standing DBR PSi films were generated by lift-off from the silicon wafer substrate using an electropolishing current. Free-standing DBR PSi films were ultrasonicated to create DBR-structured porous smart particles. Optical characteristics of porous smart particles were measured by FT-IR spectroscopy. The surface morphology of porous smart particles was determined by FE-SEM.

Effects of Vertical Ground Motion on Rocking Response of Free Standing Structure (연직지반운동이 자립형 구조체의 Rocking 거동에 미치는 영향)

  • 최인길;전영선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.169-176
    • /
    • 1997
  • In this study, vertical ground motion effects on rocking response of free standing structure are investigated. Based on the mathematical model, computer program is developed using Kutta's Fourth-Order Method. Using the program, several parametric studis are performed to predict the effects of vertical ground motion. From the results of this study, it can be found that the vertical ground motion may overturn the structure which is stable under the horizontal ground motion, stabilize the structure which overturns due to horizontal ground motion alone, and delay the time of overturning of the structure or greatly reduce the rocking of the structure. It is concluded that the effect of vertical ground motion on the rocking response of free standing structure is apparently not systematic.

  • PDF