• Title/Summary/Keyword: Free forces and moments

Search Result 44, Processing Time 0.022 seconds

Shear center for elastic thin-walled composite beams

  • Pollock, Gerry D.;Zak, Adam R.;Hilton, Harry H.;Ahmad, M. Fouad
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.91-103
    • /
    • 1995
  • An analysis to determine shear centers for anisotropic elastic thin-walled composite beams, cantilevered and loaded transversely at the free end is presented. The shear center is formulated based on familiar strength of material procedures analogous to those for isotropic beams. These procedures call for a balancing of torsional moments on the cross sectional surface and lead to a condition of zero resultant torsional couple. As a consequence, due the presence of anisotropic coupling, certain non-classical effects are manifested and are illustrated in two example problems. The most distinguishing result is that twisting may occur for composite beams even if shear forces are applied at the shear center. The derived shear center locations do not depend on any specific anisotropic bending theories per se, but only on the values of bending and shear stresses which such theories produce.

Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams

  • Berrabah, H.M.;Tounsi, Abdelouahed;Semmah, Abdelwahed;Adda Bedia, E.A.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.3
    • /
    • pp.351-365
    • /
    • 2013
  • In this paper, unified nonlocal shear deformation theory is proposed to study bending, buckling and free vibration of nanobeams. This theory is based on the assumption that the in-plane and transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. In addition, this present model is capable of capturing both small scale effect and transverse shear deformation effects of nanobeams, and does not require shear correction factors. The equations of motion are derived from Hamilton's principle. Analytical solutions for the deflection, buckling load, and natural frequency are presented for a simply supported nanobeam, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory and Reddy beam theories.

Hull/Mooring/Riser Coupled Dynamic Analysis of a Turret-Moored FPSO Compared with OTRC Experiment

  • Kim Young-Bok;Kim Moo-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.26-39
    • /
    • 2004
  • A vessel/mooring/riser coupled dynamic analysis program in time domain is developed for the global motion simulation of a turret-moored, tanker based FPSO designed for 6000-ft water depth. The vessel global motions and mooring tension are simulated for the non-parallel wind-wave-current 100-year hurricane condition in the Gulf of Mexico. The wind and current forces and moments are estimated from the OCIMF empirical data base for the given loading condition. The numerical results are compared with the OTRC(Offshore Technology Research Center: Model Basin for Offshore Platforms in Texas A&M University) 1:60 model-testing results with truncated mooring system. The system's stiffness and line tension as well as natural periods and damping obtained from the OTRC measurement are checked through numerically simulated static-offset and free-decay tests. The global vessel motion simulations in the hurricane condition were conducted by varying lateral and longitudinal hull drag coefficients, different mooring and riser set up, and wind-exposed areas to better understand the sensitivity of the FPSO responses against empirical parameters. It is particularly stressed that the dynamic mooring tension can be greatly underestimated when truncated mooring system is used.

An Estimation of Springing Responses for Recent Ships

  • Park, In-Kyu;Kim, Jong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.58-63
    • /
    • 2005
  • The estimation of springing responses for recent ships is carried out, and application to a ship design is described. To this aim, springing effects on hull girder were re-evaluated, including non-linear wave excitations and torsional vibrations of the hull. The Timoshenko beam model was used to calculate stress distribution on the hull girder, using the superposition method. The quadratic strip method was employed to calculate the hydrodynamic forces and moments on the hull. In order to remove the irregular frequencies, we adopted 'rigid lid' on the hull free surface level, and addedasymptotic interpolation along the high frequency range. Several applications were carried out on the following existing ships: The Bishop and Price's container ship, S-175 container ship, large container, VLCC, and ore carrier. One of them is compared with the ship measurement result, while another with that of the model test. The comparison between the analytical solution and the numerical solution for a homogeneous beam-type artificial ship shows good agreement. It is found that Most springing energy comesfrom high frequency waves for the ships having low natural frequency and North Atlantic route etc. Therefore, the high frequency tail of the wave spectrum should be increased by $\omega$$\^{-3}$ instead of $\omega$$\^{-4}$ or $\omega$$\^{-5}$ for the springing calculation.

An Estimation of Springing Responses for Recent Ships

  • Park In-Kyu;Lee Soo-Mok;Jung Jong-Jin;Yoon Myung-Cheol
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.173-178
    • /
    • 2004
  • The estimation of springing responses for recent ships are carried out and application to a ship design are described. To this aim, springing effects on hull girder were re-evaluated including non-linear wave excitations and torsional vibrations of the hull. The Timoshenko beam model was used to calculate stress distribution on the hull girder by the superposition method. The strip method was employed to calculate the hydrodynamic forces and moments on the hull. In order to remove the irregular frequencies, we adopted 'rigid lid' on the hull free surface level and added asymptotic interpolation along the high frequency range. Several applications to the existing ships were carried out. They are Bishop and Price's container ship, S-175 container ship, large container, VLCC and ore carrier. One of them is compared with ship measurement result while another with that of model test. Comparison between analytical solution and numerical one for homogeneous beam type artificial ship shows good agreement. It is found that most springing energy came from high frequency waves for the ships having low natural frequency and North Atlantic route etc. Therefore, the high frequency tail of the wave spectrum should be increased by $\omega^{-3}\;instead\;of\;\omega^{-4}\;or\;\omega^{-5}$ for springing calculation.

  • PDF

The correction of support interference effect of belly sting (벨리 스팅 모형 지지부의 간섭 효과 보정기법 연구)

  • Kim, Nam-Gyun;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.30-36
    • /
    • 2002
  • Wind tunnel model has some difference in shape compared to the real flight vehicle because of model support system for testing. The support system can make some differences in the measured forces and moments to the flight test data. There are several correction methods involved such as cavity pressure correction and model support interference. Internal balance and belly sting support were used for this wind tunnel test and three types of model support correction methods, variable sting thickness method, dummy sting method, and wire support method, were compared. Variable sting thickness method is well matched with wire support method, which is known for almost interference free.

Numerical Analysis on Separation Dynamics of Multi-stage Rocket System Using Parallelized Chimera Grid Scheme (병렬화된 Chimera 격자 기법을 이용한 다단 로켓의 단분리 운동 해석)

  • Ko Soon-Heum;Choi Seongjin;Kim Chongam;Rho Oh-Hyun;Park Jeong-joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.47-52
    • /
    • 2002
  • The supersonic flow around multi-stage rocket system is analyzed using 3-D compressible unsteady flow solver. A Chimera overset grid technique is used for the calculation of present configuration and grid around the core rocket is composed of 3 zones to represent fins in the core rocket. Flow solver is parallelized to reduce the computation time, and an efficient parallelization algorithm for Chimera grid technique is proposed. AUSMPW+ scheme is used for the spatial discretization and LU-SGS for the time integration. The flow field around multi-stage rocket was analyzed using this developed solver, and the results were compared with that of a sequential solver The speed-up ratio and the efficiency were measured in several processors. As a result, the computing speed with 12 processors was about 10 times faster than that of a sequential solver. Developed flow solver is used to predict the trajectory of booster in separation stage. From the analyses, booster collides against core rocket in free separation case. So, additional jettisoning forces and moments needed for a safe separation are examined.

  • PDF

Prediction of the turning and zig-zag maneuvering performance of a surface combatant with URANS

  • Duman, Suleyman;Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.435-460
    • /
    • 2017
  • The main objective of this study is to investigate the turning and zig-zag maneuvering performance of the well-known naval surface combatant DTMB (David Taylor Model Basin) 5415 hull with URANS (Unsteady Reynolds-averaged Navier-Stokes) method. Numerical simulations of static drift tests have been performed by a commercial RANS solver based on a finite volume method (FVM) in an unsteady manner. The fluid flow is considered as 3-D, incompressible and fully turbulent. Hydrodynamic analyses have been carried out for a fixed Froude number 0.28. During the analyses, the free surface effects have been taken into account using VOF (Volume of Fluid) method and the hull is considered as fixed. First, the code has been validated with the available experimental data in literature. After validation, static drift, static rudder and drift and rudder tests have been simulated. The forces and moments acting on the hull have been computed with URANS approach. Numerical results have been applied to determine the hydrodynamic maneuvering coefficients, such as, velocity terms and rudder terms. The acceleration, angular velocity and cross-coupled terms have been taken from the available experimental data. A computer program has been developed to apply a fast maneuvering simulation technique. Abkowitz's non-linear mathematical model has been used to calculate the forces and moment acting on the hull during the maneuvering motion. Euler method on the other hand has been applied to solve the simultaneous differential equations. Turning and zig-zag maneuvering simulations have been carried out and the maneuvering characteristics have been determined and the numerical simulation results have been compared with the available data in literature. In addition, viscous effects have been investigated using Eulerian approach for several static drift cases.

Investigation of the Effect of Water Depths on Two-dimensional Hydrodynamic Coefficients for Twin-hull Sections (쌍동체(雙胴體)에 작용(作用)하는 2차원 유체력계수(流體力係數)의 수심(水深)의 변화(變化)에 따른 영향(影響)에 관한 고찰(考察))

  • K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.4
    • /
    • pp.39-45
    • /
    • 1982
  • A floating rig, which has been used to develop the ocean resources has a common characteristics with the catamaran ship that it is composed of the two simple hulls. So the motion responses of the floating rig can be predicted theoretically with the aid of the strip method as those of the catamaran. And for the strip method, the two-dimensional hydrodynamic coefficients are the most important inputs to predict the results accurately. In this report, a theoretical method is proposed for calculating two-dimensional hydrodynamic forces and moments acting upon arbitrary shaped twin-hull cylinders, which are forced to make a heaving, swaying and rolling oscillation about their mean position on the free surface of a finite depth water. The theoretical results by making use of the singularity distribution method are presented. The accuracy of the coefficients was confirmed to be reasonable by the comparison with the Ohkusu's results for two circular cylinders in an infinite depth water. The depth effects on two-dimensional hydrodynamic coefficients for two circular cylinders are also checked. In some range of wave numbers, large differences in the behavior of hydrodynamic coefficients between for a finite depth and for an infinite depth are shown.

  • PDF

The Effects of Sloshing on the Responses of an LNG Carrier Moored in a Side-by-side Configuration with an Offshore Plant (해양플랜트에 병렬 계류된 LNG 운반선의 거동에 슬로싱이 미치는 영향)

  • Lee, Seung-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.16-21
    • /
    • 2010
  • During the loading/offloading operation of a liquefied natural gas carrier (LNGC) that is moored in a side-by-side configuration with an offshore plant, sloshing that occurs due to the partially filled LNG tank and the interactive effect between the two floating bodies are important factors that affect safety and operability. Therefore, a time-domain software program, called CHARM3D, was developed to consider the interactions between sloshing and the motion of a floating body, as well as the interactions between multiple bodies using the potential-viscous hybrid method. For the simulation of a floating body in the time domain, hydrodynamic coefficients and wave forces were calculated in the frequency domain using the 3D radiation/diffraction panel program based on potential theory. The calculated values were used for the simulation of a floating body in the time domain by convolution integrals. The liquid sloshing in the inner tanks is solved by the 3D-FDM Navier-Stokes solver that includes the consideration of free-surface non-linearity through the SURF scheme. The computed sloshing forces and moments were fed into the time integration of the ship's motion, and the updated motion was, in turn, used as the excitation force for liquid sloshing, which is repeated for the ensuing time steps. For comparison, a sloshing motion coupled analysis program based on linear potential theory in the frequency domain was developed. The computer programs that were developed were applied to the side-by-side offloading operation between the offshore plant and the LNGC. The frequency-domain results reproduced the coupling effects qualitatively, but, in general, the peaks were over-predicted compared to experimental and time-domain results. The interactive effects between the sloshing liquid and the motion of the vessel can be intensified further in the case of multiple floating bodies.