• Title/Summary/Keyword: Free field

Search Result 2,290, Processing Time 0.031 seconds

Collision-Free Path Planning for a Redundant Manipulator Based on PRM and Potential Field Methods (PRM과 포텐셜 필드 기법에 기반한 다자유도 머니퓰레이터의 충돌회피 경로계획)

  • Park, Jung-Jun;Kim, Hwi-Su;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.362-367
    • /
    • 2011
  • The collision-free path of a manipulator should be regenerated in the real time to achieve collision safety when obstacles or humans come into the workspace of the manipulator. A probabilistic roadmap (PRM) method, one of the popular path planning schemes for a manipulator, can find a collision-free path by connecting the start and goal poses through the roadmap constructed by drawing random nodes in the free configuration space. The path planning method based on the configuration space shows robust performance for static environments which can be converted into the off-line processing. However, since this method spends considerable time on converting dynamic obstacles into the configuration space, it is not appropriate for real-time generation of a collision-free path. On the other hand, the method based on the workspace can provide fast response even for dynamic environments because it does not need the conversion into the configuration space. In this paper, we propose an efficient real-time path planning by combining the PRM and the potential field methods to cope with static and dynamic environments. The PRM can generate a collision-free path and the potential field method can determine the configuration of the manipulator. A series of experiments show that the proposed path planning method can provide robust performance for various obstacles.

Optimization of the Mixing Flow in an Agitated Tank

  • Yoo, Dal-Hyun;Yang, Si-Young;Choi, Youn-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.151-157
    • /
    • 2005
  • In the chemical, mineral and electronics industries, mechanically stirred tanks are widely used for complex liquid and particle mixing processes. In order to understand the complex phenomena that occur in such tanks, it is necessary to investigate flow field in the vessel. Most difficulty on the numerical analysis of stirred tank flow field focused particularly on free surface analysis. In order to decrease the dead zone and improve the flow efficiency of a system with free surface, this paper presents a new method that overcomes free surface effects by properly combining the benefits of using experiment and 3-D CFD. This method is applied to study the mixing flow in an agitated tank. From the results of experimental studies using the PIV (particle image velocimetry) system, the distribution of mixing flow including free surface are obtained. And these values that are expressed as a velocity vector field have been patched for simulating the free surface. The results of velocity distribution obtained by 3-D CFD are compared with those of experimental results. The experimental data and the simulation results are in good agreement.

  • PDF

Formation of Charged Exciton in GaAs-AlGaAs Double-Quantum-Well Structure at High Magnetic Field (GaAs 이중 양자우물구조에서 고자기장에 유도된 대전된 엑시톤의 발생)

  • Kim, Yong Min
    • Journal of Integrative Natural Science
    • /
    • v.2 no.4
    • /
    • pp.265-269
    • /
    • 2009
  • The photoluminescence was measured in GaAs-AlGaAs double-quantum-well structure at high magnetic field. Although the phototransition characteristics displayed a free-particle transition at low magnetic field, the change of free-particle transition into bound-exciton transition was observed at high magnetic field (above 10 T). A charged exciton formation due to charge-unbalanced electron-hole was identified by using a spin-polarized photoluminescence method. An increase of exciton formation due to the localization of free-particle at magnetic field was observed according to the increase of magnetic field.

  • PDF

Evaluation of Seismic Loading of Pile Foundation Structure Considering Soil-foundation-structure Interaction (지반-기초-구조물 상호작용을 고려한 말뚝 기초 구조물에서의 지진 하중 평가)

  • Yoo, Min Taek;Ha, Jeong Gon;Jo, Seong-Bae;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2014
  • In this study, a series of dynamic centrifuge tests were performed for a soil-foundation-structural interaction system in dry sand with various embedded depths and superstructure conditions. Sinusoidal wave, sweep wave and real earthquake were used as input motion with various input acceleration and frequencies. Based on the results, a natural period and an earthquake load for soil-structure interaction system were evaluated by comparing the free-field and foundation accelerations. The natural period of free field is longer than that of the soil-foundation-structure system. In addition, it is confirmed that the earthquake load for soil-foundation-structure system is smaller than that of free-field in short period region. In contrast, the earthquake load for soil-foundation-structure interaction system is larger than that of free-field in long period region. Therefore, the current seismic design method, applying seismic loading of free-field to foundation, could overly underestimate seismic load and cause unsafe design for long period structures, such as high-rise buildings.

A New Method for Coronal Force-Free Field Computation That Exactly Implements the Boundary Normal Current Density Condition

  • Yi, Sibaek;Jun, Hongdal;Lee, Junggi;Choe, G.S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.71.3-71.3
    • /
    • 2019
  • Previously we developed a method of coronal force-free field construction using vector potentials. In this method, the boundary normal component of the vector potential should be adjusted at every iteration step to implement the boundary normal current density, which is provided by observations. The method was a variational method in the sense that the excessive kinetic energy is removed from the system at every iteration step. The boundary condition imposing the normal current density, however, is not compatible with the variational procedure seeking for the minimum energy state, which is employed by most force-free field solvers currently being used. To resolve this problem, we have developed a totally new method of force-free field construction. Our new method uses a unique magnetic field description using two scalar functions. Our procedure is non-variational and can impose the boundary normal current density exactly. We have tested the new force-free solver for standard Low & Lou fields and Titov-Demoulin flux ropes. Our code excels others in both examples, especially in Titov-Demoulin flux ropes, for which most codes available now yield poor results. Application to a real active region will also be presented.

  • PDF

Construction of a Specific Pathegen Free Room for Magnetic Field Exposure (자계노출 소동물 실험용 Specific Pathegen Free Room 제작 및 성능평가)

  • Myung, Sung-Ho;Kim, Sang-Beom;Lee, Dong-IL
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.407-409
    • /
    • 2001
  • 상용주파 자계와 인체의 건강에 대해서 과학적인 해명 목적으로 Specific Pathegen Free Room을 제작하였다. 환경 실험실의 설치조건 중 자계 노출장 치간의 Stray Field의 영향이 중요하므로 SPF Room을 배치하는 데 있어 각 자계노출장치의 Stray Field로 인한 노출장치의 자계 균일도를 예측 계산하고 그 결과를 바탕으로 최적 배치를 구하였으며 실제 자계 균일도를 측정한 결과 목표한 바와 같이 2%이내임을 확인하였다.

  • PDF

A Numerical Analysis of Gravity and Free Surface Effects on a Two-Dimensional Supercavitating Flow (2차원 초공동 유동의 중력과 자유표면 효과에 대한 수치해석)

  • Kim, Hyoung-Tae;Lee, Hyun-Bae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.435-449
    • /
    • 2014
  • The effects of the gravity field and the free surface on the cavity shape and the drag are investigated through a numerical analysis for the steady supercavitating flow past a simple two-dimensional body underneath the free surface. The continuity and the RANS equations are numerically solved for an incompressible fluid using a $k-{\epsilon}$ turbulence model and a mixture fluid model has been applied for calculating the multiphase flow of air, water and vapor using the method of volume of fluid and the Schnerr-Sauer cavitation model. Numerical solutions have been obtained for the supercavitating flow about a two-dimensional $30^{\circ}$ wedge in wide range of depths of submergence and inflow velocities. The results are presented for the cavity shape, especially the length and the width, and the drag of the wedge in comparison with those of the case for the infinite fluid flow neglecting the gravity and the free surface. The influences of the gravity field and the free surface on the aforementioned quantities are discussed. The length and the width of the supercavity are reduced and the centerline of the cavity rises toward the free surface due to the effects of the gravity field and the free surface. The drag coefficient of the wedge, however, is about the same except for shallow depths of submergence. As the supercavitating wedge is approaching very close to the free surface, it is found the length and the width of a cavity are shorten even though the cavitation number is reduced. Also the present result suggests that, under the influence of the gravity field and the free surface, the length of the supercavity for a certain cavitation number varies and moreover is proportional to the inverse of the submergence depth Froude number.

Identification of Soil Stiffness Using Forced Vibration Test Data (강제진동시험자료를 사용한 지반의 강성계수 추정)

  • 최준성;이종세;김동수;이진선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.101-108
    • /
    • 2002
  • This paper presents an input and system identification technique for a free-field system using forced vibration data. Identification is carried out on geotechnical experiment site at Yong-jong Island where Inchon International Airport being constructed. The identified quantities are the input load as well as the shear moduli of the free-field soil regions. The dynamic response analysis on the free-field system is carried out using the finite element method incorporating the infinite element formulation fur the unbounded layered soil medium. The criterion function for the parameter estimation is constructed using the frequency response amplitude ratios of the dynamic responses measured at several points of the free-field, so that the information on the input loading may be excluded. The constrained steepest descent method is employed to obtain the revised parameters. The simulated dynamic responses using the identified parameters and input load show excellent agreements with the measured responses.

  • PDF

Field emission from hydrogen-free DLC

  • Suk Jae chung;Han, Eun-Jung;Lim, Sung-Hoon;Jin Jang
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.49-53
    • /
    • 1999
  • We have studied the field emission characteristics of diamond-like-carbon (DLC) films deposited by a layer-by-layer technique using plasma enhanced chemical vapor deposition, in which the deposition of a thin layer of DLC and a CH4 plasma exposure on its surface were carried out alternatively. The hydrogen-free DLC can be deposited by CH4 plasma exposure for 140 sec on a 5 nm DLC layer. N2 gas-phase doping in the CH4 plasma was also carried out to reduce the work function of the DLC. The optimum [N2]/[CH4] flow rate ratio was found to be 9% for the efficient electron emission, at which the onset-field was 7.2 V/$\mu\textrm{m}$. It was found that the hydrogen-free DLC has a stable electron emitting property.

  • PDF

Earthquake Response Analysis through a Fundamental Solution to Multilayered Half-Planes (다층반무한 기본해를 이용한 지진응답해석)

  • 김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.128-135
    • /
    • 1997
  • The indirect boundary integral equation is formulated to analyze the behavior of a cavity in a multilayered half-plane subjected to earthquake waves. This formulation uses the fundamental solutions that are numerically calculated by the generalized transmission and reflection coefficient method. The free surface of the cavity without external excitation influences the behavior of the half-plane. Consequently this analysis adds the consideration of scattering-field into the analysis and the total motion field of the cavity is decomposed into the free-field and scattering-field motions. The free-field motion is obtained from the modification of the transmission and reflection coefficient method. The scattering-field motion is calculated is calculated by the indirect boundary value problem which has the ficticious boundaries and sources. In this study, P wave, SV wave, SH wave, and Rayleigh wave are analyzed respectively.

  • PDF