• 제목/요약/키워드: Free fatty acid receptor 4

Search Result 15, Processing Time 0.019 seconds

Estrogen deprivation and excess energy supply accelerate 7,12-dimethylbenz(a)anthracene-induced mammary tumor growth in C3H/HeN mice

  • Kim, Jin;Lee, Yoon Hee;Yoon Park, Jung Han;Sung, Mi-Kyung
    • Nutrition Research and Practice
    • /
    • v.9 no.6
    • /
    • pp.628-636
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Obesity is a risk factor of breast cancer in postmenopausal women. Estrogen deprivation has been suggested to cause alteration of lipid metabolism thereby creating a cellular microenvironment favoring tumor growth. The aim of this study is to investigate the effects of estrogen depletion in combination with excess energy supply on breast tumor development. MATERIALS/METHODS: Ovariectomized (OVX) or sham-operated C3H/HeN mice at 4 wks were provided with either a normal diet or a high-fat diet (HD) for 16 weeks. Breast tumors were induced by administration of 7,12-dimethylbenz(a)anthracene once a week for six consecutive weeks. RESULTS: Study results showed higher serum concentrations of free fatty acids and insulin in the OVX+HD group compared to other groups. The average tumor volume was significantly larger in OVX+HD animals than in other groups. Expressions of mammary tumor insulin receptor and mammalian target of rapamycin proteins as well as the ratio of pAKT/AKT were significantly increased, while pAMPK/AMPK was decreased in OVX+HD animals compared to the sham-operated groups. Higher relative expression of liver fatty acid synthase mRNA was observed in OVX+HD mice compared with other groups. CONCLUSIONS: These results suggest that excess energy supply affects the accelerated mammary tumor growth in estrogen deprived mice.

Psidium guajava L. leaf extract inhibits adipocyte differentiation and improves insulin sensitivity in 3T3-L1 cells

  • Choi, Esther;Baek, Seoyoung;Baek, Kuanglim;Kim, Hye-Kyeong
    • Nutrition Research and Practice
    • /
    • v.15 no.5
    • /
    • pp.568-578
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Psidium guajava L. (guava) leaves have been shown to exhibit hypoglycemic and antidiabetic effects in rodents. This study investigated the effects of guava leaf extract on adipogenesis, glucose uptake, and lipolysis of adipocytes to examine whether the antidiabetic properties are mediated through direct effects on adipocytes. MATERIALS/METHODS: 3T3-L1 cells were treated with 25, 50, 100 ㎍/mL of methanol extract from guava leaf extract (GLE) or 0.1% dimethyl sulfoxide as a control. Lipid accumulation was evaluated with Oil Red O Staining and AdipoRed assay. Immunoblotting was performed to measure the expression of adipogenic transcription factors, fatty acid synthase (FAS), and AMP-activated protein kinase (AMPK). Glucose uptake under basal or insulin-stimulated condition was measured using a glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose. Lipolysis from fully differentiated adipocytes was measured by free fatty acids release into the culture medium in the presence or absence of epinephrine. RESULTS: Oil Red O staining and AdipoRed assay have shown that GLE treatment reduced lipid accumulation during adipocyte differentiation. Mitotic clonal expansion, an early essential event for adipocyte differentiation, was inhibited by GLE treatment. GLE inhibited the expression of transcription factors involved in adipocyte differentiation, such as peroxisome proliferator-activated receptor 𝛄 (PPAR𝛄), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein-1c (SREBP-1c). FAS expression was also decreased while the phosphorylation of AMPK was increased by GLE treatment. In addition, GLE increased insulin-induced glucose uptake into adipocytes. In lipid-filled mature adipocytes, GLE enhanced epinephrine-induced lipolysis but reduced basal lipolysis dose-dependently. CONCLUSIONS: The results show that GLE inhibits adipogenesis and improves adipocyte function by reducing basal lipolysis and increasing insulin-stimulated glucose uptake in adipocytes, which can be partly associated with antidiabetic effects of guava leaves.

Pharmacological Effects of KR60886, A New β3 Adrenoceptor Agonist

  • Lee, Sang-Suk;Yang, Sung-Don;Ha, Jae-Du;Choi, Joong-Kwon;Cheon, Hyae-Gyeong
    • Biomolecules & Therapeutics
    • /
    • v.12 no.4
    • /
    • pp.215-220
    • /
    • 2004
  • In an attempt to develop new anti-diabetic agents, a series of aryloxypropanolamine derivatives was synthesized to serve as ${\beta}_3$ adrenoceptor agonists. Among these derivatives, 1-{1-methyl-3-[4-(2-methyl-2H-1,2,3,4-tetrazol-5-yl)phenyl]propylamino}-3-phenoxy-2-propanol (KR60886) possessed a high affinity for the ${\beta}_3$ adrenoceptor (Ki = 28 nM) and moderate affinities for ${\beta}_1$ and ${\beta}_2$ adrenoceptors (Ki = 95 nM and 100 nM, respectively). In addition, KR60886 stimulated cAMP production with an EC$_{50}$ of 0.4 ${\mu}M$, confirming its agonistic activity for the ${\beta}_3$ adrenoceptor. In vivo activities of KR60886 were examined by using a fat-fed/streptozotocin (STZ)-treated rat model and the ob/ob mouse model. Oral administration of KR60886 (10 mg/kg) for 3 days (b.i.d.) to fat-fed/STZ-treated rats significantly lowered plasma glucose levels and reduced plasma free fatty acid concentrations. Similarly, KR60886 treatment (10 mg/kg/day for 7 d) resulted in a reduction of plasma glucose concentrations in ob/ob mice. The present study suggests that KR60886 is a potent ${\beta}_3$ receptor agonist with in vivo anti-diabetic properties.

A Study on the Effects and Mechanisms of the Combination Extract of Ephedrae Herba and Coicis Semen on Lipid Accumulation and Glucose Absorption in Non-Alcoholic Fatty Liver Disease (마황과 의이인 혼합추출물이 비알콜성 지방간 모델에서 지질 축적 및 포도당 흡수에 미치는 효과 및 기전 연구)

  • Ga-Ram Yu;Hye-Lin Jin;Dong-Woo Lim;Won-Hwan Park
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.24 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Objectives: Ephedrae herba (EH) and Coicis semen (CS) has been frequently prescribed for the treatment of obesity. However, effects of combinational extracts of these two herbs on non-alcoholic fatty liver disease are unknown. The aim of the present study was to investigate the effects of EH and CS on lipid accumulation and glucose absorption in free fatty acids (FFAs) or palmitic acid (PA)-treated HepG2 cells. Methods: Five samples of EH and CS were extracted by combination ratios (S1=0:100, S2=25:75, S3=50:50, S4=75:25, S5=100:0). Oil Red O staining was used to measure lipid accumulation in FFAs-induced steatosis cells. Intracellular triglycerides and total cholesterol levels were measured in FFAs-induced steatotic HepG2 cells. In PA-treated cells, intracellular 2-NBDG was detected using a fluorescence microplate reader and flow cytometry. Phosphorylation of key metabolism-related factors of AMP-activated protein kinase and acetyl-CoA carboxylase, expression of key lipid synthesis-related factors carnitine palmitoyltransferase 1 alpha (CPT1α), sterol regulatory element-binding protein 1 (SREBP1), peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT enhancer binding protein alpha (C/EBPα) were confirmed by western blot. Results: Treatment of EH-CS combination in the FFAs-induced steatotic HepG2 cells significantly reduced lipid accumulation. As the relative ratio of Ephedrae herba increased, the lipid-lowering effects of the combination were increased. However, S1 and S5 of Ephedrae herba and Coicis semen did not significantly reduce triglycerides and total cholesterol induced by FFAs. However, the combination of Ephedrae herba and Coicis semen restored glucose absorption in PA-induced HepG2 cells. Major makers of SREBP1, PPARγ, C/EBPα, and CPT1α expression tended to decrease with EH ratio. Conclusions: The EH-CS combination has advantages over sole EH and CS extracts in improving lipid and glucose metabolism in liver steatosis models.

Effects of ethanol extract of Polygonatum sibiricum rhizome on obesity-related genes (황정 에탄올 추출물의 비만 조절 유전자에 대한 효과)

  • Jeon, Woo-Jin;Lee, Do-Seop;Shon, Suh-Youn;Seo, Yun-Ji;Yeon, Seung-Woo;Kang, Jae-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.384-391
    • /
    • 2016
  • In previous studies, we confirmed that the ethanol extract of Polygonatum sibiricum (ID1216) has anti-obesity effects on high-fat diet-fed mice. To identify the obesity-related genes affected by ID1216, we studied its effects both in vivo and in vitro. In mice, single administration of ID1216 increased the expression of obesity-related genes including sirtuin1 (SIRT1), peroxisome proliferator-activated receptor ${\gamma}$ coactivator $1{\alpha}$ ($PGC1{\alpha}$) and peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) compared to that in mice administered the vehicle; their downstream genes (uncoupling proteins, acyl-CoA oxidase, adipocyte protein 2, and hormone-sensitive lipase) were also increased by ID1216. In fully differentiated 3T3-L1 adipocytes, ID1216 showed the same effects on anti-obesity genes as those in the animal model. Based on these results, we propose that ID1216 has anti-obesity effects by regulating the $SIRT1-PGC1{\alpha}-PPAR{\alpha}$ pathway and their downstream genes, thereby controlling energy and lipid metabolisms.