• Title/Summary/Keyword: Free Jet

Search Result 232, Processing Time 0.021 seconds

Atomization Improvement of a Liquid Jet with Wall Impingement and its Application to a Jet Engine Atomizer

  • Shiga, Seiichi
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.176-189
    • /
    • 2006
  • In the present study, capability of improving the liquid atomization of a high-speed liquid jet by using wall impingement is explored, and its application to a jet engine atomize. is demonstrated. Water is injected from a thin nozzle. The liquid jet impinges on a wall positioned close to the nozzle exit, forming a liquid film. The liquid film velocity and the SMD were measured with PDA and LDSA, respectively. It was shown that the SMD of the droplets was determined by the liquid film velocity and impingement angle, regardless of the injection pressure or impingement wall diameter. When the liquid film velocity was smaller than 300m/s, a smaller SMD was obtained, compared with a simple free jet. This wall impingement technique was applied to a conventional air-blasting nozzle for jet engines. A real-size air-blasting burner was installed in a test rig in which three thin holes were made to accommodate liquid injection toward the intermediate ring, as an impingement wall. The air velocity was varied from 41 to 92m/s, and the liquid injection pressure was varied from 0.5 to 7.5 MPa. Combining wall impinging pressure atomization with gas-blasting produces remarkable improvement in atomization, which is contributed by the droplets produced in the pressure atomization mode. Comparison with the previous formulation for conventional gas-blasting atomization is also made, and the effectiveness of utilizing pressure atomization with wall impingement is shown.

  • PDF

Direct Solving the Boltzmann Equation for Supersonic Jet Problems with Instabilities

  • Aristov V.V.;Zabelok S.A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.268-269
    • /
    • 2003
  • The Boltzmann kinetic equation is solved directly by means of the conservative splitting method. Underexpanded supersonic free jet flows with small Knudsen numbers are studied. In this numerical simulation features intrinsic to appropriate experiments are observed. Streamwise vortices in a mixing layer and chaotic downstream temporal-spatial fluctuations of microscopic quantities with large amplitude are obtained.

  • PDF

A Study on The Characteristics of the 2-Dimensional Jet (2차원 분류특성에 관한 연구)

  • Kim, Kyung-Hoon;Park, Sang-Kyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.43-51
    • /
    • 1989
  • Free jet was investigated experimentally and numerically in range of Reynolds number from 9900 to 21000. The working fluid was air; the mean velocity components and turbulent quantities were measured by a hot-wire anemometer. In numerical computations, the governing partial differential equations of elliptic type were solved with conventional k- ${\epsilon}$ turbulence model. The measurements show that the jet increased linearly in flow direction, and that similarity for each turbulent quantity such as Reynolds shear stress, or turbulent kinetic energy was revealed in the fully developed region. The computational results show good agreements with experiments.

  • PDF

A Study on the Improvement Plan of the Tax-Free System for Overseas Laborers : Focusing on International Air Crew (국외근로자 비과세제도 개선방안 연구 : 국제선항공승무원을 중심으로)

  • Lee, Ki Il;Kim, Soo Ryun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.3
    • /
    • pp.42-52
    • /
    • 2015
  • Since the tax-free system for overseas laborers was implemented in 1974, the tax-free limits of international air crew, overseas construction workers and crewmen of deep-sea fishing ships and ocean-going ships had been identical by 2005, but there are big differences, currently. The Ministry of Strategy and Finance pointed out the poor working environments and international competitiveness of the industries to explain the reason for the differential tax-free limit. From this perspective, the fairness of the tax-free system for overseas laborers was analyzed. This is an empirical study, based on the objective fact. The study finding showed that international air crew were working in the structural flight work environments to threaten the right of health due to jet lag and excessive exposure to high-altitude cosmic radiation. Therefore, it was analyzed there should be a proper system reform to apply the tax-free limits to international air crew which are identical to those applied to overseas construction workers and crewmen of deep-sea fishing ships and ocean-going ships, for a fair taxation.

Preliminary Design of Supersonic Ground Test Facility (초음속 지상 추진 시험설비의 기본설계)

  • 이양지;차봉준;양수석;김형진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.13-19
    • /
    • 2003
  • A supersonic ground test facility to develop Ramjet and SCRamjet(Supersonic Combustion Ramjet) engine should be able to simulate high altitude and high Mach number conditions including air total pressure, oxygen level and specific heat ratio at the combustion chamber entrance. The test facility also should simulate the effect of oblique shock wave caused by the flight vehicle. The test facility developed in this study is supersonic free-jet blowdown type, which consists of high pressure air supply source(maximum pressure=32MPa), air heater(vitiation type), supersonic diffuser, ejector, and test chamber(nozzle exit dimension=200mm$\times$200mm).

  • PDF

Experimental Study on Downstream Local Scour of Free-Falling Jet (자유낙하수맥 하류부에서의 세굴에 관한 실험적 연구)

  • 윤세의;이종태
    • Water for future
    • /
    • v.28 no.4
    • /
    • pp.147-154
    • /
    • 1995
  • Scour characteristics of noncohesive bed materials at the downstream of free-falling jet were analyzed through hydraulic experiments. It was assumed that the downstream had no special energy dissipators. Flow characteristics of free falling jet from rectangular section were studied, and scour characteristics with and without mounds, which were generated at the downstream of the scour hole, were comparatively analyzed for various bed materials, discharges and tailwater depths. Not only the equilibrium scour depth but also the height of mound could be expressed as a function of densimetric Froude number. Densimetric Froude number had closer relationship with the equilibrium dimensionless scour depth than other dimensionless parameters. It was suggested that the mound effects should be considered at the design stage of bed protection works.

  • PDF

An Experimental Study of Supersonic Dual Coaxial Free Jet

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Lee, Byeong-Eun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2107-2115
    • /
    • 2003
  • A supersonic dual coaxial jet has been employed popularly for various industrial purposes, such as gasdynamic laser, supersonic ejector, noise control and enhancement of mixing. Detailed characteristics of supersonic dual coaxial jets issuing from an inner supersonic nozzle and outer sonic nozzles with various ejection angles are experimentally investigated. Three important parameters, such as pressure ratios of the inner and outer nozzles, and outer nozzle ejection angle, are chosen for a better understanding of jet structures in the present study. The results obtained from the present experimental study show that the Mach disk diameter becomes smaller, and the Mach disk moves toward the nozzle exit, and the length of the first shock cell decreases with the pressure ratio of the outer nozzle. It was also found that the highly underexpanded outer jet produces a new oblique shock wave, which makes jet structure much more complicated. On the other hand the outer jet ejection angle affects the structure of the inner jet structure less than the pressure ratio of the outer nozzle, relatively.

Effect of Nozzle Configuration and Impinging Surface on the Impinging Tone Generation by Circular Jets (충돌면과 노즐의 형상이 원형충돌제트에 의한 충돌순음 발생에 미치는 영향)

  • Im, Jung-Bin;Kwon, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.693-700
    • /
    • 2003
  • The effect of the configuration of the nozzle and the impinging surface on the characteristics of the hole-tones has been experimentally investigated. It is found that the plate-tone is a special case of hole-tones, where the hole diameter is zero. The jet velocity range for hole-tones is divided into the low velocity region associated with laminar jet and the high velocity region with turbulent jet. The frequency of the tone is that for the shear layer instability at the nozzle exit or that attainable by a cascade of vortex pairing process with increase of the impinging distance. When the distance is longer than one diameter the frequency decreases to the terminal value near the preferred frequency of the column mode instability, in the range 0.23< $St_d$<0.53, where $St_d$ is the Strouhal number defined by $fd/U_J$, f the frequency, d the nozzle diameter, and $U_J$ the exit velocity. While the convection speed of the downstream vortex, in the present study, is almost constant at low-speed laminar jet, it increases with distance at high-speed turbulent jet. As the frequency increases, the convection speed decreases in the low frequency range corresponding to the preferred mode, in agreement with the existing experimental data for a free jet.

Experimental investigation of jet pump performance used for high flow amplification in nuclear applications

  • Vimal Kotak;Anil Pathrose;Samiran Sengupta;Sugilal Gopalkrishnan;Sujay Bhattacharya
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3549-3558
    • /
    • 2023
  • The jet pump can be used in a test device of a nuclear reactor for high flow amplification as it reduces inlet flow requirement and thereby size of the process components. In the present work, a miniature jet pump was designed to meet high flow amplification greater than 3. Subsequently, experiments were carried out using a test setup for design validation and performance evaluation of the jet pump for different parameters. It was observed that a minimum pressure of 0.6 bar (g) was required for the secondary fluid inside the jet pump to ensure cavitation free performance at high amplification. Spacing between the nozzle tip and the mixing chamber entry point had significant effect on the performance of the jet pump. Variation in primary flow, temperature and area ratio also affected the performance. It was observed that at high flow amplification, the analytical solution differed significantly from experimental results due to very large velocities encountered in the miniature size jet pump.

Initial Flow Characteristics of the Turbulent Circular Jet Discharging into the Sudden Expansion Pipe (축대칭 급확대관으로 분사되는 난류분사류의 초기유동 특성)

  • 김동식;한용운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3335-3344
    • /
    • 1994
  • The initial flow characteristics of the turbulent circular jet discharging into the sudden expansion pipes have been investigated by the hot wire anemometry. Evolutions of similarity, centerline behavior, jet boundary and typical turbulent quantities were looked into for the expansion ratios. The results show that the spreading rates of discharging jet seem not to be dependent of the expansion ratio and that the velocity profiles in the radial directions exhibit the similarity in the regions, 2-5d, 2-6d and 3-8d for the corresponding expansion rations of 2, 3 and 5, respectively. With the increase of expansion ratio the centerline velocity decays rather slowly. The anisotropic behaviors of the discharging jets into the sudden expansion pipe look stronger than those of the free jet.