• Title/Summary/Keyword: Free Flow Speed

Search Result 242, Processing Time 0.031 seconds

Experimental Study on the Performance of a Two-Stage Vortex Turbine with a Free Water Surface (자유수면을 갖는 2단 와류 수차의 성능에 관한 실험적 연구)

  • Jong-Woo Kim;In-Ho Choi;Gi-Soo Chung
    • Journal of Wetlands Research
    • /
    • v.26 no.3
    • /
    • pp.236-244
    • /
    • 2024
  • This research was conducted to determine the performance of a two-stage vortex turbine with a free water surface. The performance of the two-stage runner was studied by varying the flow rate and the position of the runner in the cylindrical vortex chamber. The experimental results showed that the performance parameters such as torque, voltage, current, and rotational speed increased with increasing flow rate. The runner depth ratio has a significant impact on the performance of the two-stage vortex turbine. The highest power generated by the two-stage runner occurred in the range of 0.054 to 0.162 runner depth ratio near the orifice. The power output of the two-stage runner was higher than that of the single runner due to more vortex and blade contact area in the flow range of 7.2 to 7.7 L/s.

Effect of waterjet intake plane shape on course-keeping stability of a planing boat

  • Park, Kyurin;Kim, Dong Jin;Kim, Sun Young;Seo, Jeonghwa;Suh, Innduk;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.585-598
    • /
    • 2021
  • The course-keeping stability of a high speed planing boat should be considered at the design stage for its safe operations. The shape of waterjet intake plane is one of important design parameters of a waterjet propelled planing boat. That has significant influences on the stern flow patterns and pressure distributions. In this study, the effects of the waterjet intake shapes of planing boats on the course-keeping stabilities are investigated. Two kinds of designed planing boats have the same dimensions, but there are differences in waterjet intake plane shapes. Captive and free-running model tests, Computational Fluid Dynamics (CFD) analyses are carried out in order to estimate their hydrodynamic performances including course-keeping stabilities. The results show that the flat and wide waterjet intake plane of the initially designed boat makes the course-keeping stability worse. The waterjet intake shape is redesigned to improve the course-keeping stability. The improved performances are confirmed by free-running model tests and full-scale trials.

Numerical Analysis of the Cavitation Around an Underwater Body with Control Fins (제어핀이 달린 수중 물체의 공동 수치해석)

  • Kim, Hyoung-Tae;Choi, Eun-Ji;Knag, Kyung-Tae;Yoon, Hyun-Gull
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.298-307
    • /
    • 2019
  • The evolution of the cavity and the variation of the drag for an underwater body with control fins are investigated through a numerical analysis of the steady cavitating turbulent flow. The continuity and the steady-state RANS equations are numerically solved using a mixture fluid model for calculating the multiphase turbulent flow of air, water and vapor together with the SST $k-{\omega}$ turbulence model. The method of volume of fluid is applied by the use of the Sauer's cavitation model. Numerical solutions have been obtained for the cavity flow about an underwater body shaped like the Russian high-speed torpedo, Shkval. Results are presented for the cavity shape and the drag of the body under the influence of the gravity and the free surface. The evolution of the cavity with the body speed is discussed and the calculated cavity shapes are compared with the photographs of the cavity taken from an underwater launch experiment. Also the variation of the drag for a wide range of the body speed is investigated and analyzed in details.

Noise Prediction of Hovering Tilt Rotor (정지 비행 시 틸트 로터에서 발생하는 소음 예측)

  • Kim, Kyu-Young;Lee, Seong-kyu;Lee, Duck-Joo;Hong, Suk-Ho;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.821-825
    • /
    • 2005
  • Tilt rotor aircraft was developed for satisfying VSTOL (vertical short take off and landing) capability and cruise performance. However the noise generated by tilt rotor system causes one of the most serious problems. In this paper, noise characteristics of tilt rotor system in hovering flight are predicted by using free wake method and Lowson's formula. The flow field of the tilt rotor is simulated by using time marching free wake method, and the free field acoustic pressure is calculated through Lowson's formula. The predicted results are compared with experimental data at various observing positions. In the near field, they show good agreement with experimental data regardless of rotating speed and collective pitch angles of 6, 8 and 10 degree, although there are some discrepancies between prediction and experiment in the far field and at the rotating axis in the near field. It seems that the reason of these discrepancies is difference of unsteady force fluctuation between experiment and calculation.

  • PDF

Flow-Induced Noise Prediction for Submarines (잠수함 형상의 유동소음 해석기법 연구)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seol, Hanshin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.930-938
    • /
    • 2018
  • Underwater noise radiated from submarines is directly related to the probability of being detected by the sonar of an enemy vessel. Therefore, minimizing the noise of a submarine is essential for improving survival outcomes. For modern submarines, as the speed and size of a submarine increase and noise reduction technology is developed, interest in flow noise around the hull has been increasing. In this study, a noise analysis technique was developed to predict flow noise generated around a submarine shape considering the free surface effect. When a submarine is operated near a free surface, turbulence-induced noise due to the turbulence of the flow and bubble noise from breaking waves arise. First, to analyze the flow around a submarine, VOF-based incompressible two-phase flow analysis was performed to derive flow field data and the shape of the free surface around the submarine. Turbulence-induced noise was analyzed by applying permeable FW-H, which is an acoustic analogy technique. Bubble noise was derived through a noise model for breaking waves based on the turbulent kinetic energy distribution results obtained from the CFD results. The analysis method developed was verified by comparison with experimental results for a submarine model measured in a Large Cavitation Tunnel (LCT).

Experimental Investigation of Local Flow around KRISO 3600TEU Container Ship Model in Towing Tank (KRISO 3600TEU 컨테이너 모형 주위의 국부유동 계측에 관한 연구)

  • Van, Suak-Ho;Kim, Wu-Joan;Kim, Do-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.1-10
    • /
    • 2000
  • It is very important to understand the flow characteristics for design of the hull forms with better resistance and propulsive performance. The experimental results explicating the local flow characteristics are also invaluable for validation of the CFD codes for both inviscid and viscous flow calculations. This paper describes the techniques and equipment developed for the measurement of wave pattern on the free surface and local mean velocity fields around the stern of the modern container ship with bow and stern bulbs in KRISO towing tank. The results contained in this paper can provide the valuable information on the flow characteristics of the modern commercial hull form of small block coefficient with high speed.

  • PDF

A Numerical Study of the Performance of a Contoured Shock Tube for Needle-free Drug Delivery

  • Rasel, Md. Alim Iftekhar;Kim, Heuy Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.2
    • /
    • pp.32-38
    • /
    • 2012
  • In recent years a unique drug delivery system named as the transdermal drug delivery system has been developed which can deliver drug particles to the human skin without using any external needle. The solid drug particles are accelerated by means of high speed gas flow through a shock tube imparting enough momentum so that particles can penetrate through the outer layer of the skin. Different systems have been tried and tested in order to make it more convenient for clinical use. One of them is the contoured shock tube system (CST). The contoured shock tube consists of a classical shock tube connected with a correctly expanded supersonic nozzle. A set of bursting membrane are placed upstream of the nozzle section which retains the drug particle as well as initiates the gas flow (act as a diaphragm in a shock tube). The key feature of the CST system is it can deliver particles with a controllable velocity and spatial distribution. The flow dynamics of the contoured shock tube is analyzed numerically using computational fluid dynamics (CFD). To validate the numerical approach pressure histories in different sections on the CST are compared with the experimental results. The key features of the flow field have been studied and analyzed in details. To investigate the performance of the CST system flow behavior through the shock tube under different operating conditions are also observed.

In-vitro study on the hemorheological characteristics of chicken blood in microcirculation

  • Ji, Ho-Seong;Lee, Jung-Yeop;Lee, Sang-Joon
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.2
    • /
    • pp.89-95
    • /
    • 2007
  • The flow characteristics of chicken blood in a micro-tube with a $100{\mu}m$ diameter are investigated using a micro-Particle Image Velocimetry (PIV) technique. Chicken blood with 40% hematocrit is supplied into the micro-tube using a syringe pump. For comparison, the same experiments are repeated for human blood with 40% hematocrit. Chicken blood flow has a cell-free layer near the tube wall, and this layer's thickness increases with the increased flow speed due to radial migration. As a hemorheological feature, the aggregation index of chicken blood is about 50% less than that of human blood. Therefore, the non-Newtonian fluid features of chicken blood are not very remarkable compared with those of human blood. As the flow rate increases, the blunt velocity profile in the central region of the micro-tube sharpens, and the parabolicshaped shear stress distribution becomes to have a linear profile. The viscosity of both blood samples in a low shear rate condition is overestimated, while the viscosity in a high shear rate range is underestimated due to radial migration and the presence of a cell-depleted layer.

Numerical Simulation of Edgetone Phenomenon in Flow of a Jet-edge System Using Lattice Boltzmann Model

  • Kang, Ho-Keun
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • An edgetone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, 2-dimensional edgetone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle is presented using lattice Boltmznan model with 21 bits, which is introduced a flexible specific heat ratio y to simulate diatomic gases like air. The blown jet is given a parabolic inflow profile for the velocity, and the edges consist of wedges with angle 20 degree (for symmetric wedge) and 23 degree (for inclined wedge), respectively. At a stand-off distance w, the edge is inserted along the centerline of the jet, and a sinuous instability wave with real frequency is assumed to be created in the vicinity of the nozzle exit and to propagate towards the downward. Present results presented have shown in capturing small pressure fluctuating resulting from periodic oscillation of the jet around the edge. The pressure fluctuations propagate with the speed of sound. Their interaction with the wedge produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing the singularities at the nozzle lips. It is found that, as the numerical example, satisfactory simulation results on the edgetone can be obtained for the complex flow-edge interaction mechanism, demonstrating the capability of the lattice Boltzmann model with flexible specific heat ratio to predict flow-induced noises in the ventilating systems of ship.

An Analysis about Amount of Students' Circulation based on the Flow Coefficients in Middle School managed by Variation Type (유동계수 산정에 기초한 교과교실형 운영 중학교 학생 동선이동량 분석)

  • Jeong, Joo-Seong
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.25 no.6
    • /
    • pp.21-28
    • /
    • 2018
  • To compare the physical quantity of students circulation along the moving path during recess of a variation type operation middle school, five points were actually observed. The flow coefficient for these points was calculated, and the change in flow coefficient was verified and tracked over time. During the operation of the classroom, the characteristics of crowdedness and congestion time depending on the physical conditions of the frequently moved paths were shown. Even in the same corridor, the difference between the flow coefficient and the congestion time of the corridor facing the open space and the blocked space was noticeably different. As a result, detailed factors such as free walking speed, the degree of freedom of passing and the possibility of collision were also identified. This means that detailed countermeasures for the student's path should be considered first when planning the moving space of a variation type school, and identifying the characteristics of these factors could be used as useful basic materials for developing various models of classroom space.