• Title/Summary/Keyword: Free Edge

Search Result 474, Processing Time 0.027 seconds

Shear Strength of Single Anchors in Uncracked and Unreinforced Concrete (비균열·무근콘크리트의 단일앵커 전단내력 평가)

  • Kim, Sung-Yong;Kim, Kyu-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.171-181
    • /
    • 2003
  • This study concerns the prediction of shear capacity, as governed by concrete breakout failure, concrete pryout failure and steel failure, of single anchors located close to free edge and located far from a free edge and installed in uncracked, unreinforced concrete. For this purpose, the methods to evaluate the shear capacity of the single anchors in concrete are summarized and the experimental data are compared with capacities by the two present methods: the method of ACI 349-90 and concrete capacity design (CCD) method.

An Experimental Study on Overlap Control at Plate Rolling (후판압연에서의 오버랩 제어에 대한 실험적 연구)

  • 천명식;한석영;이준정;김종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.376-385
    • /
    • 1991
  • For manufacturing trimming-free plates which have rectangular shaped edges and straight edges in as-rolled state, it is necessary to investigate rolling characteristics of overlap, bulge and width deviation etc. in a standardized plate rolling process. The present wok is for preventing edge overlap as the first approach to develop trimming-free plate rolling technique. An experimental study on overlap control was done with plasticine material in order to examine influence factors and find a control method by use of a laboratory mill scaled down to one tenth of actual production mill. It was found that edge overlapping was increased with the increase of slab thickness and of broadside rolling ratio, but decreased with the increase of chamfered amount on slab edges. In the simulated rolling experiment with edge chamfered slabs of various chamfered angles, the chamfered angle of 60.deg. was the most effective one for reducing overlapping irrespective of slab thickness and of broadside rolling ratio.

Edge-Preserving Iterative Reconstruction in Transmission Tomography Using Space-Variant Smoothing (투과 단층촬영에서 공간가변 평활화를 사용한 경계보존 반복연산 재구성)

  • Jung, Ji Eun;Ren, Xue;Lee, Soo-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.219-226
    • /
    • 2017
  • Penalized-likelihood (PL) reconstruction methods for transmission tomography are known to provide improved image quality for reduced dose level by efficiently smoothing out noise while preserving edges. Unfortunately, however, most of the edge-preserving penalty functions used in conventional PL methods contain at least one free parameter which controls the shape of a non-quadratic penalty function to adjust the sensitivity of edge preservation. In this work, to avoid difficulties in finding a proper value of the free parameter involved in a non-quadratic penalty function, we propose a new adaptive method of space-variant smoothing with a simple quadratic penalty function. In this method, the smoothing parameter is adaptively selected for each pixel location at each iteration by using the image roughness measured by a pixel-wise standard deviation image calculated from the previous iteration. The experimental results demonstrate that our new method not only preserves edges, but also suppresses noise well in monotonic regions without requiring additional processes to select free parameters that may otherwise be included in a non-quadratic penalty function.

The Rolling Earlobe Flap for Dilated Ear Holes Following Ear Gauging: A Novel Approach to Aesthetically Preserving Earlobe Soft Tissue Volume

  • Pek, Wan-Sze;Goh, Lin Hon Terence;Pek, Chong Han
    • Archives of Plastic Surgery
    • /
    • v.44 no.5
    • /
    • pp.453-456
    • /
    • 2017
  • Patients are increasingly seeking repair of their earlobes following ear gauging. Research has shown that current repair techniques either excessively reduce the lobular volume or leave an obvious scar along the free edge of the earlobe. In our case series, we describe the use of a novel technique for repairing earlobes following ear gauging using a rolling earlobe flap that preserves the lobular volume and avoids leaving a scar on the free edge of the lobule. The procedure was performed on 3 patients (6 earlobes) who had defects from ear gauging that ranged from 3.0 to 6.5 cm. There were no postoperative complications of infection, wound dehiscence, flap necrosis, hypertrophic scars, or keloids, and all patients were highly satisfied with the postoperative results. This versatile technique allows for an aesthetically pleasing reconstruction of the lobule with the advantages of: the absence of a surgical scar on the free edge of the lobule, preserving the lobule volume, and presenting a highly customizable technique that allows lobules to be created with various shapes and volumes.

Discrete-Layer Model for Prediction of Free Edge Stresses in Laminated Composite Plates

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.615-626
    • /
    • 2010
  • The discrete-layer model is proposed to analyze the edge-effect problem of laminates under extension and flexure. Based on three-dimensional elasticity theory, the displacement fields of each layer in a laminate have been treated discretely in terms of three displacement components across the thickness. The displacement fields at bottom and top surfaces within a layer are approximated by two-dimensional shape functions. Then two surfaces are connected by one-dimensional high order shape functions. Thus the p-convergent refinement on approximated one- and two-dimensional shape functions can be implemented independently of each other. The quality of present model is mostly determined by polynomial degrees of shape functions for given displacement fields. For nodal modes with physical meaning, the linear Lagrangian polynomials are considered. Additional modes without physical meaning, which are created by increasing nodeless degrees of shape functions, are derived from integrals of Legendre polynomials which have an orthogonality property. Also, it is assumed that mapping functions are linear in the light of shape of laminated plates. The results obtained by this proposed model are compared with those available in literatures. Especially, three-dimensional out-of-plane stresses in the interior and near the free edges are evaluated and convergence performance of the present model is established with the stress results.

Investigating the effect of edge crack on the modal properties of composite wing using dynamic stiffness matrix

  • Torabi, Ali Reza;Shams, Shahrokh;Fatehi-Narab, Mahdi
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.543-564
    • /
    • 2021
  • In this study free vibration analysis of a cracked Goland composite wing is investigated. The wing is modelled as a cantilevered beam based on Euler- Bernoulli equations. Also, composite material is modelled based on lamina fiber-reinforced. Edge crack is modelled by additional boundary conditions and local flexibility matrix in crack location, Castigliano's theorem and energy release rate formulation. Governing differential equations are extracted by Hamilton's principle. Using the separation of variables method, general solution in the normalized form for bending and torsion deflection is achieved then expressions for the cross-sectional rotation, the bending moment, the shear force and the torsional moment for the cantilevered beam are obtained. The cracked beam is modelled by separation of beam into two interconnected intact beams. Free vibration analysis of the beam is performed by applying boundary conditions at the fixed end, the free end, continuity conditions in the crack location of the beam and dynamic stiffness matrix determinant. Also, the effects of various parameters such as length and location of crack and fiber angle on natural frequencies and mode shapes are studied. Modal analysis results illustrate that natural frequencies and mode shapes are affected by depth and location of edge crack and coupling parameter.

A Study on Edge Reinforcement Effect of Cylindrical Shells with Composite Laminate (복합적층 원통형 쉘의 단부보강 효과 연구)

  • Son, Byung-Jik;Ji, Hyo-Seon;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.47-54
    • /
    • 2012
  • In this study, composite laminate cantilever type cylindrical shells with edge-stiffeners are analyzed. A versatile 4-node flat shell element which is useful for the analysis of shell structures is used. An improved flat shell element is established by the combined use of the addition of non-conforming displacement modes and the substitute shear strain fields. Two models by load conditions are considered. Load type A and B are loaded by point load at the free edge and line load respectively. A various parameter examples are presented to obtain proper stiffened length and stiffened thickness of edge-stiffeners. It is shown that the thickness of shell can be reduced minimum 30% by appropriate edge-stiffeners.

Analysis of Cantilever Cylindrical Shells with Edge-Stiffeners (캔틸레버 원통형 쉘의 단부보강 해석)

  • Park, Weon-Tae;Son, Byung-Jik
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.78-86
    • /
    • 2005
  • In this study, cantilever cylindrical shells with edge-stiffeners are analyzed. A versatile 4-node flat shell element which is useful for the analysis of shell structures is used. An improved flat shell element is established by the combined use of the addition of non-conforming displacement modes and the substitute shear strain fields. Three models by load conditions are considered. Model A, B and C are loaded by point load at the free edge, line load and external pressure respectively. A various parameter examples are presented to obtain proper stiffened length and stiffened thickness of edge-stiffeners. It is shown that the thickness of shell can be reduced more than 50% for Model A, about $20{\sim}30%$ for Model B by appropriate edge-stiffeners.

Thermal Stresses near the Edge of Layered Beam with Adhesive Layer (접착층을 가진 겹층보 끝단 부위의 열응력)

  • 김형남;김영호
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.51-53
    • /
    • 2004
  • An analytical method is developed which focused on the end effects for determining the thermal stress distribution in an laminated beam bonded with adhesive layer. This method gives the stress distribution which satisfy the stress-free boundary condition at edge completely. Numerical example, in which an Al-Cu beam bonded with solder(Pb-Sn) is treated, shows that the shear and peeling stresses at the interfaces are significant near the edge and become negligible in the interior region.

  • PDF

Numerical Analysis of Flow-Induced Noise by Vortex-Edge Interaction (Vortex-Edge의 상호작용에 기인한 유동소음의 전산해석)

  • KANG HO-KEUN;KIM EUN-RA
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.15-21
    • /
    • 2004
  • An edge tone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, we present a 2-D edge tone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle, using the finite difference lattice Boltzmann method (FDLBM). We use a modified version of the lattice BGK compressible fluid model, adding an additional term and allowing for longer time increments, compared to a conventional FDLBM, and also use a boundary fitted coordinates system. The jet is chosen long enough in order to guarantee the parabolic velocity profile of the jet at the outlet, and the edge consists of a wedge with an angle of ${\alpha}$ = 23. At a stand-off distance, the edge is inserted along the centerline of the jet, and a sinuous instability wave, with real frequency, is assumed to be created in the vicinity of the nozzle and propagates towards the downstream. We have succeeded in capturing very small pressure fluctuations, resulting from periodical oscillations of a jet around the edge. The pressure fluctuations propagate with the speed of sound. Its interaction with the wedge produces an non-rotational feedback field, which, near the nozzle exit, is a periodic transverse flow, producing the singularities at the nozzle lips.