• Title/Summary/Keyword: Free Curved Shell Structure

Search Result 3, Processing Time 0.02 seconds

Modal analysis of FG sandwich doubly curved shell structure

  • Dash, Sushmita;Mehar, Kulmani;Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.721-733
    • /
    • 2018
  • The modal frequency responses of functionally graded (FG) sandwich doubly curved shell panels are investigated using a higher-order finite element formulation. The system of equations of the panel structure derived using Hamilton's principle for the evaluation of natural frequencies. The present shell panel model is discretised using the isoparametric Lagrangian element (nine nodes and nine degrees of freedom per node). An in-house MATLAB code is prepared using higher-order kinematics in association with the finite element scheme for the calculation of modal values. The stability of the opted numerical vibration frequency solutions for the various shell geometries i.e., single and doubly curved FG sandwich structure are proven via the convergence test. Further, close conformance of the finite element frequency solutions for the FG sandwich structures is found when compared with the published theoretical predictions (numerical, analytical and 3D elasticity solutions). Subsequently, appropriate numerical examples are solved pertaining to various design factors (curvature ratio, core-face thickness ratio, aspect ratio, support conditions, power-law index and sandwich symmetry type) those have the significant influence on the free vibration modal data of the FG sandwich curved structure.

Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures

  • B, Chandra Mouli;K, Ramji;Kar, Vishesh R;Panda, Subrata K;K, Lalepalli Anil;Pandey, Harsh K
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.527-536
    • /
    • 2018
  • The free vibration frequency responses of the graded flat and curved (cylindrical, spherical, hyperbolic and elliptical) panel structures investigated in this research considering the rectangular and tilted planforms under unlike temperature loading. For the numerical implementation purpose, a micromechanical model is prepared with the help of Voigt's methodology via the power-law type of material model. Additionally, to incur the exact material strength, the temperature-dependent properties of each constituent of the graded structure included due to unlike thermal environment. The deformation kinematics of the rectangular/tilted graded shallow curved panel structural is modeled via higher-order type of polynomial functions. The final form of the eigenvalue equation of the heated structure obtained via Hamilton's principle and simultaneously solved numerically using finite element steps. To show the solution accuracy, a series of comparison the results are compared with the published data. Some new results are exemplified to exhibit the significance of power-law index, shallowness ratio, aspect ratio and thickness ratio on the combined thermal eigen characteristics of the regular and tilted graded panel structure.

Three-dimensional vibration analysis of 3D graphene foam curved panels on elastic foundations

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.