• Title/Summary/Keyword: Frechet space

Search Result 23, Processing Time 0.018 seconds

AN ERROR ANALYSIS FOR A CERTAIN CLASS OF ITERATIVE METHODS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.743-753
    • /
    • 2001
  • We provide local convergence results in affine form for inexact Newton-like as well as quasi-Newton iterative methods in a Banach space setting. We use hypotheses on the second or on the first and mth Frechet-derivative (m≥2 an integer) of the operator involved. Our results allow a wider choice of starting points since our radius of convergence can be larger than the corresponding one given in earlier results using hypotheses on the first-Frechet-derivative only. A numerical example is provided to illustrate this fact. Our results apply when the method is, for example, a difference Newton-like or update-Newton method. Furthermore, our results have direct applications to the solution of autonomous differential equations.

THE EFFECT OF ROUNDING ERRORS ON NEWTON METHODS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.765-772
    • /
    • 2000
  • In this study we are concerned with the problem of approximating a solution of a nonlinear equation in Banach space using Newton-like methods. Due to rounding errors the sequence of iterates generated on a computer differs from the sequence produced in theory. Using Lipschitz-type hypotheses on the second Frechet-derivative instead of the first one, we provide sufficient convergence conditions for the inexact Newton-like method that is actually generated on the computer. Moreover, we show that the ratio of convergence improves under our conditions. Furthermore, we provide a wider choice of initial guesses than before. Finally, a numerical example is provided to show that our results compare favorably with earlier ones.

EXAMPLES AND FUNCTION THEOREMS AROUND AP AND WAP SPACES

  • Cho, Myung-Hyun;Kim, Jun-Hui;Moon, Mi-Ae
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.447-452
    • /
    • 2008
  • We provide some examples around AP and WAP spaces which are connected with higher convergence properties-radiality, semiradiality and pseudoradiality. We also prove a theorem (Theorem 3.2) that (a) any pseudo-open continuous image of an AP-space is an AP-space and (b) any pseudo-open continuous image of an WAP-space is an WAP-space. This answers the question posed by V. V. Tkachuk and I. V. Yaschenko [10].

APPROXIMATING SOLUTIONS OF EQUATIONS BY COMBINING NEWTON-LIKE METHODS

  • Argyros, Ioannis K.
    • The Pure and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.35-45
    • /
    • 2008
  • In cases sufficient conditions for the semilocal convergence of Newtonlike methods are violated, we start with a modified Newton-like method (whose weaker convergence conditions hold) until we stop at a certain finite step. Then using as a starting guess the point found above we show convergence of the Newtonlike method to a locally unique solution of a nonlinear operator equation in a Banach space setting. A numerical example is also provided.

  • PDF

ON THE CONVERGENCE AND APPLICATIONS OF NEWTON-LIKE METHODS FOR ANALYTIC OPERATORS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.41-50
    • /
    • 2002
  • We provide local and semilocal theorems for the convergence of Newton-like methods to a locally unique solution of an equation in a Banach space. The analytic property of the operator involved replaces the usual domain condition for Newton-like methods. In the case of the local results we show that the radius of convergence can be enlarged. A numerical example is given to justify our claim . This observation is important and finds applications in steplength selection in predictor-corrector continuation procedures.

FIXED POINT THEOREMS FOR INFINITE DIMENSIONAL HOLOMORPHIC FUNCTIONS

  • Harris, Lwarence-A.
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.175-192
    • /
    • 2004
  • This talk discusses conditions on the numerical range of a holomorphic function defined on a bounded convex domain in a complex Banach space that imply that the function has a unique fixed point. In particular, extensions of the Earle-Hamilton Theorem are given for such domains. The theorems are applied to obtain a quantitative version of the inverse function theorem for holomorphic functions and a distortion form of Cartan's unique-ness theorem.

SYNDETIC SEQUENCES AND DYNAMICS OF OPERATORS

  • Rezaei, Hamid
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.537-545
    • /
    • 2012
  • In the present paper, we show that a continuous linear operator T on a Frechet space satisfies the Hypercyclic Criterion with respect to a syndetic sequence must satisfy the Kitai Criterion. On the other hand, an operator, hereditarily hypercyclic with respect to a syndetic sequence must be mixing. We also construct weighted shift operators satisfying the Hypercyclicity Criterion which do not satisfy the Kitai Criterion. In other words, hereditarily hypercyclic operators without being mixing.

ON THE SEMILOCAL CONVERGENCE OF THE GAUSS-NEWTON METHOD USING RECURRENT FUNCTIONS

  • Argyros, Ioannis K.;Hilout, Said
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.307-319
    • /
    • 2010
  • We provide a new semilocal convergence analysis of the Gauss-Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using our new idea of recurrent functions, and a combination of center-Lipschitz, Lipschitz conditions, we provide under the same or weaker hypotheses than before [7]-[13], a tighter convergence analysis. The results can be extented in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail [7]-[13].

APPROXIMATION OF COMMON FIXED POINTS OF NON-SELF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Kim, Jong-Kyu;Dashputre, Samir;Diwan, S.D.
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.179-196
    • /
    • 2009
  • Let E be a uniformly convex Banach space and K a nonempty closed convex subset which is also a nonexpansive retract of E. For i = 1, 2, 3, let $T_i:K{\rightarrow}E$ be an asymptotically nonexpansive mappings with sequence ${\{k_n^{(i)}\}\subset[1,{\infty})$ such that $\sum_{n-1}^{\infty}(k_n^{(i)}-1)$ < ${\infty},\;k_{n}^{(i)}{\rightarrow}1$, as $n{\rightarrow}\infty$ and F(T)=$\bigcap_{i=3}^3F(T_i){\neq}{\phi}$ (the set of all common xed points of $T_i$, i = 1, 2, 3). Let {$a_n$},{$b_n$} and {$c_n$} are three real sequences in [0, 1] such that $\in{\leq}\;a_n,\;b_n,\;c_n\;{\leq}\;1-\in$ for $n{\in}N$ and some ${\in}{\geq}0$. Starting with arbitrary $x_1{\in}K$, define sequence {$x_n$} by setting {$$x_{n+1}=P((1-a_n)x_n+a_nT_1(PT_1)^{n-1}y_n)$$ $$y_n=P((1-b_n)x_n+a_nT_2(PT_2)^{n-1}z_n)$$ $$z_n=P((1-c_n)x_n+c_nT_3(PT_3)^{n-1}x_n)$$. Assume that one of the following conditions holds: (1) E satises the Opial property, (2) E has Frechet dierentiable norm, (3) $E^*$ has Kedec -Klee property, where $E^*$ is dual of E. Then sequence {$x_n$} converges weakly to some p${\in}$F(T).