• Title/Summary/Keyword: Framed ALOHA

Search Result 32, Processing Time 0.016 seconds

Fast Congestion Control to Transmit Bursty Traffic Rapidly in Satellite Random Access Channel (위성 랜덤 액세스 채널에서 Bursty 트래픽의 신속한 전송을 위한 빠른 혼잡 제어 기법)

  • Noh, Hong-Jun;Lee, Yoon-Seong;Lim, Jae-Sung;Park, Hyung-Won;Lee, Ho-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1031-1041
    • /
    • 2014
  • In this paper, we propose a traffic load control scheme, called fast congestion control (FCC), for a satellite channel using enhanced random access schemes. The packet repetition used by enhanced random access schemes increases not only the maximum throughput but also the sensitivity to traffic load. FCC controls traffic load by using an access probability, and estimates backlogged traffic load. If the backlogged traffic load exceeds the traffic load corresponding to the maximum throughput, FCC recognizes congestion state, and processes the backlogged traffic first. The new traffic created during the congestion state accesses the channel after the end of congestion state. During the congestion state, FCC guarantees fast transmission of the backlogged traffic. Therefore, FCC is very suitable for the military traffic which has to be transmit urgently. We simulate FCC and other traffic load control schemes, and validate the superiority of FCC in latency.

A Message Reduction Method for Performance Improvement of the ISO/IEC 18000-7 based Active RFID System (ISO/IEC 18000-7 기반 능동형 RFID 시스템의 성능 개선을 위한 메시지 감소 기법)

  • Yoon, Won-Ju;Chung, Sang-Hwa;Kang, Su-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1459-1467
    • /
    • 2009
  • In this paper, we propose a novel method for improving the tag collection performance in active RFID systems by modifying the tag collection algorithm in the ISO/IEC 18000-7 standard. The proposed method enables to reduce the time slot size by reducing the response message size from the tag and to decrease the number of command messages from the reader throughout the tag collection process. This results in reducing the time required for tag collection and the battery consumption on tags by decreasing the total amount of messages. Via the simulation experiments, we evaluated the performance of the tag collection applied with the proposed method, compared with that of the basic tag collection complying with the standard. The simulation results showed that the proposed method could decrease the total amount of messages between the reader and tags dramatically and reduce the average tag collection time by 19.99% and 16.03% when the reader requested the additional data of 50 bytes and 100 bytes from the tags, respectively.