• 제목/요약/키워드: Frame-Core-Outrigger System

검색결과 7건 처리시간 0.02초

Challenge in the Structural Design of Suzhou IFS

  • Zhou, Jianlong;Huang, Yongqiang
    • 국제초고층학회논문집
    • /
    • 제10권3호
    • /
    • pp.165-171
    • /
    • 2021
  • Core-outrigger-mega frame system is used in Suzhou IFS with 95-story, 450 m-tall, which is beyond Chinese code limit. Besides simple introduction on design principle, structure system and analysis, key techniques including performance based design criteria, frame shear ratio, capacity check of mega column, human comfort criteria under wind induced vibration and TSD design were presented in details for reference of similar super tall building design.

Several Issues Closely Related to Construction in the Structural Design of Wuhan Center

  • Jian, Zhou
    • 국제초고층학회논문집
    • /
    • 제11권3호
    • /
    • pp.189-196
    • /
    • 2022
  • The practical difficulties of construction will impose many restrictions on the structural design, and the construction method can also provide unexpected ideas for solving design problems. Through the discussion of three issues closely related to construction in the structural design of Wuhan Center, this paper illustrates the importance of in-depth consideration of the construction situations in the structural design stage. The topics of "Connection between Embedded Steel Plates in Steel Plate Composite Shear Wall" and "Connection Joint between Outrigger Truss and Core Wall" are about how to facilitate on-site construction by simplifying and optimizing detail design. The topic of "Adjusting Internal Force Distribution by Optimizing Construction Sequence" is about how to make the construction process a tool for structural design.

Effects of Perimeter to Core Connectivity on Tall Building Behavior

  • Besjak, Charles;Biswas, Preetam;Petrov, Georgi I.;Streeter, Matthew;Devin, Austin
    • 국제초고층학회논문집
    • /
    • 제6권1호
    • /
    • pp.1-9
    • /
    • 2017
  • The Pertamina Energy Tower (PET) and Manhattan West North Tower (MWNT) are two supertall towers recently designed and engineered by Skidmore, Owings & Merrill (SOM). The structural system for both buildings consists of an interior reinforced concrete core and a perimeter moment frame system, which is primarily structural steel. As is typical for tall towers with both concrete and steel elements, staged construction analysis was performed in order to account for the long term effects of creep and shrinkage, which result in differential shortening between the interior concrete core and steel perimeter frame. The particular design of each tower represents two extremes of behavior; PET has a robust connection between the perimeter and core in the form of three sets of outriggers, while the perimeter columns of MWNT do not reach the ground, but are transferred to the core above the base. This paper will present a comparison of the techniques used during the analysis and construction stages of the design process with the goal of understanding the differences in structural behavior of these two building systems in response to the long term effects of creep and shrinkage. This paper will also discuss the design and construction techniques implemented in order to minimize the differential shortening between the interior and exterior over the lifespan of these towers.

Structural System Selection and Highlights of Changsha IFC T1 Tower

  • Jianlong, Zhou;Daoyuan, Lu;Liang, Huang;Jun, Ji;Jun, Zhu;Jingyu, Wang
    • 국제초고층학회논문집
    • /
    • 제3권2호
    • /
    • pp.99-106
    • /
    • 2014
  • This paper presents the determination of the structural system of the Changsha IFC T1 tower with 452 m in architectural height and 440.45 m in structural height. Sensitivity analyses are carried out by varying the location of belt trusses and outriggers. The enhancement of seismic capacity of the outer frame by reasonably adjusting the column size is confirmed based on parametric studies. The results from construction simulation including the non-load effect of structures demonstrate that the deformation of vertical members has little effect on the load-bearing capacity of belt trusses and outriggers. The elastoplastic time-history analysis shows that the overall structure under rare earthquake load remains in an elastic state. The influence of the frame shear ratio and frame overturning moment ratio on the proposed model and equivalent mega column model is investigated. It is found that the frame overturning moment ratio is more applicable for judging the resistance of the outer frame against lateral loads. Comparison is made on the variation of these two effects between a classical frame-core tube-outrigger structure and a structure with diagonal braces between super columns under rare earthquakes. The results indicate that plasticity development of the top core cube of the braced structure may be significantly improved.

한국 현대건축의 기술역사에 관한 연구 (A Study on the History of Technology in Korean Modern Architecture)

  • 정인하;김진
    • 건축역사연구
    • /
    • 제9권3호
    • /
    • pp.51-69
    • /
    • 2000
  • This study tries to analyze the development of architectural technologies appeared in several tall buildings and large spatial structures from 1955 to 1999 in Korea. We suppose that these buildings represent the development of technology in Korean modern architecture. By the detailed analysis of these buildings, we can arrive at a conclusion as such; During the years 1955-1999, there existed a great changement in the eighties. We can find this fact very well in the domain of structural system and curtain wall system. In large spatial structures, the structural-system of shell and steel truss dome was replaced by that of space frame, space truss and cable truss with membrane. In tall building, the structural system of rigid frame and shear wall was replaced by tubular system, core and outrigger system. Korean architects introduced the aluminum curtain wall in the sixties, but its low technological level caused many problems in reality. Therefore, precast concrete curtain wall appeared from seventies as the main method for an outer wall in tall building. With the augmentation of height after 1980, PC curtain wall was replaced by the aluminum curtain wall of unit type and structural glass wall system. These systems help to stress the transparency in a tall building.

  • PDF

Shaking Table Test and Seismic Performance Evaluation of Shanghai Tower

  • Chunyu, Tian;Congzhen, Xiao;Hong, Zhang;Jinzhe, Cao
    • 국제초고층학회논문집
    • /
    • 제1권3호
    • /
    • pp.221-228
    • /
    • 2012
  • Shanghai Tower is a super high-rise building of 632 m height with 'mega frame-core- outrigger truss' structure system. Due to the complexity and irregularity of structure, shaking table test was carried out to investigate its seismic performance. A 1/40 scaled test model was designed, built and tested on shaking table under earthquake of small, moderate and large levels. The experimental results showed that the structure can meet the requirements of Chinese codes and reach scheduled performance objectives. Elastic and plastic time-history analysis on the structure were carried out and the results were compared to experimental results. Based on the research results some suggestions were proposed to contribute favorable effect on the seismic capacity of the structure.

여러개의 파사드리거를 갖는 고층구조물의 응력과 변위 (Forces and Displacements of Highrise Braced Frames with Facade Riggers)

  • 육민혜;정동조
    • 한국전산구조공학회논문집
    • /
    • 제18권2호
    • /
    • pp.181-190
    • /
    • 2005
  • 파사드리거는 아웃리거 구조시스템에 rms거하는 것으로 구조물의 외곽에 설치되는 파사드리거는 구조물의 내부에 수직으로 설치된 가새골조로부터 분리되어 구조물의 외곽에 설치된다. 따라서 이 시스템은 중앙의 코아에 부착되는 아웃리거와는 달리 사재로 인한 내부 동선의 장애가 발생하지 않는 장점이 있다. 리거의 현재에 인접한 슬래브가 파사드리거와 가새골조 사이의 전단력을 전달하며 가새골조와 파사드리거를 지지하는 기둥 사이의 상호작용을 일으킨다. 이 논문에서는 등분포하중과 삼각분포하중, 그리고 구조물 상단에 집중하중이 작용하고 구조물의 외곽에 여러개의 파사드리거가 설치된 가새골조에 대한 근사해석방법을 제시하였으며, 구조모델들을 이용하여 MIDAS프로그램에 의한 결과와 비교하였고 만족할만한 결과를 얻었다. 본 연구에서 제시된 매트릭스 해석방법은 구조물 상단의 수평변위나 가새골조 하단의 전도모멘트와 같은 구조물의 거동에 대한 파사드리거의 영향을 신속하게 평가할 수 있으며 구조물 상단의 변위를 최소화할 수 있는 파사드리거의 최적위치 결정을 위해 유용하게 사용될 수 있을 것이다.