• Title/Summary/Keyword: Frame structure

Search Result 2,454, Processing Time 0.027 seconds

Experimental and numerical investigations into the composite behaviour of steel frames and precast concrete infill panels with window openings

  • Teeuwen, P.A.;Kleinman, C.S.;Snijder, H.H.;Hofmeyer, H.
    • Steel and Composite Structures
    • /
    • v.10 no.1
    • /
    • pp.1-21
    • /
    • 2010
  • As an alternative for conventional structures for tall buildings, a hybrid lateral load resisting structure has been designed, enabling the assembly of tall buildings directly from a truck. It consists of steel frames with discretely connected precast concrete infill panels provided with window openings. Besides the stiffening and strengthening effect of the infill panels on the frame structure, economical benefits may be derived from saving costs on materials and labour, and from reducing construction time. In order to develop design rules for this type of structure, the hybrid infilled frame has recently been subjected to experimental and numerical analyses. Ten full-scale tests were performed on one-storey, one-bay, 3 by 3 m infilled frame structures, having different window opening geometries. Subsequently, the response of the full-scale experiments was simulated with the finite element program DIANA. The finite element simulations were performed taking into account non-linear material characteristics and geometrical non-linearity. The experiments show that discretely connected precast concrete panels provided with a window opening, can significantly improve the performance of steel frames. A comparison between the full-scale experiments and simulations shows that the finite element models enable simulating the elastic and plastic behaviour of the hybrid infilled frame.

A Study on the Measurement of Vibration Mode Shape using Holographic interferometry (홀로그래픽 간섭법을 이용한 진동모드의 계측에 관한 연구)

  • 김광래
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.130-135
    • /
    • 2000
  • In this study the vibration behavior of the stiffened double cylinder was experimently analyzed. Due to the complex structure of the double cylinder the outside cylinder frequency responses to the exciting forces applied on various posi-tions were analyzed by using spectrum analyzer in conjunction with an accelerometer and the natural frequencies were obtained. The technique of time-averaged holographic interferometry is applied to study the vibration characteristics of outside cylinder with stiffening T frame. The experimental data showed that the T frame had salient effect of damping on the testing structure at most of resonances. however the experimental results also revealed interesting phenomenon. At some particular frequencies the T frame. The experimental data showed that the T frame had salient effect of damping on the testing structure at most of resonances. However the experimental results also revealed interesting phenomenon. At some particular frequencies the T frame seemed to behave as a transmitter. In addition it has been successfully demon-started that optical method such as holographic interferometry is well suited for the identification of mode shapes. They can give us a whole-field non-contact measurement instead of the point-wise measurement by accelerometer in classical modal testing.

  • PDF

A Basic Research for Algorithms of Form Quantity Survey of Green Frame (그린프레임의 거푸집 물량산출 알고리즘 기초연구)

  • Kim, Taekoo;Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.193-194
    • /
    • 2014
  • Green Frame is a building frame system composed of precast concrete columns and beams. For the construction to run smoothly, the quantity of frames should be estimated in the planning phase and a plan on production of members should be established in connection with the overall work plan. The algorithm for calculation of the amount of forms used in Green Frame automatically estimates the quantity of forms using the design structure prepared in the design phase. The number and area of forms are calculated using the member size drawn from the structure design. Based on the quantity calculated, the type and area per form size are estimated to be used in preparing BOQ (Bill of Quantity). Thus, the time required for architectural planning and design can be shortened when the algorithm for calculation of the amount of forms is applied. This study is on the basic research of calculating the quantity of forms using the structure design and of the algorithm for calculation of the amount of forms used for production of composite PC members.

  • PDF

Earthquake loss assessment framework of ductile RC frame using component- performance -based methodology

  • Shengfang Qiao;Xiaolei Han;Hesong Hu;Mengxiong Tang
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.369-382
    • /
    • 2024
  • The earthquake loss assessment framework of ductile reinforced concrete (or RC) frame using component-performance -based methodology was studied in this paper. The elasto-plastic rotation angle was used as the damage indicator of structural component, and the damage-to-loss model was proposed on the basis of the deformation indicator of structural component. Dynamic instability during incremental dynamic analysis was taken as collapse criterion, and column failure was taken as criterion that structure has to be demolished. Expected earthquake losses of low-rise, mid-rise and high-rise RC frames were discussed. The expected earthquake loss encompassed collapse loss, demolition loss and repair loss. Furthermore, component groups of RC frame were divided into structural components, nonstructural components and rugged components. The results indicate that ductile RC frame is more likely to be demolished than collapse, especially in low-rise and mid-rise RC frames. Furthermore, the less collapse margin ratio the structure has, the more demolition probability the structure will suffer under rare earthquake. The demolition share of total earthquake loss might be more prominent than repair share and collapse share in ductile RC frame.

A Study on the Development of Grating Structure for Drain of Water (도로 배수용 그레이팅 구조의 개선에 관한 연구)

  • Kim Key-Sun;Lee Eun-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.531-538
    • /
    • 2006
  • Grating is an installed structure on the road for drain. This paper proposes a new product which can prevent the accumulation of earth and sand through the improvement of Grating structure. There were usually harmful insects and bad smell because of accumulated garbage in the frame of previous product. The product had a reverse-flowing sewage due to the bad draining in case of rain. The whole thing of the existing Grating installed with the one set of frame and main body should be changed when it was damaged. This study is to develop a structure which can separate grating main body from frame and grating main body can equip and separate after fixing frame to the manhole with cement. also install jig for the loss prevention and change for the better.

  • PDF

Limit states of RC structures with first floor irregularities

  • Favvata, Maria J.;Naoum, Maria C.;Karayannis, Chris G.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.791-818
    • /
    • 2013
  • The seismic performance of reinforced concrete (RC) frame structures with irregularities leading to soft first floor is studied using capacity assessment procedures. The soft first story effect is investigated for the cases: (i) slab-column connections without beams at the first floor, (ii) tall first story height and (iii) pilotis type building (open ground story). The effects of the first floor irregularity on the RC frame structure performance stages at global and local level (limit states) are investigated. Assessment based on the Capacity Spectrum Method (ATC-40) and on the Coefficient Method (FEMA 356) is also examined. Results in terms of failure modes, capacity curves, interstory drifts, ductility requirements and infills behaviour are presented. From the results it can be deduced that the global capacity of the structures is decreased due to the considered first floor morphology irregularities in comparison to the capacities of the regular structure. An increase of the demands for interstory drift is observed at the first floor level due to the considered irregularities while the open ground floor structure (pilotis type) led to even higher values of interstory drift demands at the first story. In the cases of tall first story and slab-column connections without beams soft-story mechanisms have also been observed at the first floor. Rotational criteria (EC8-part3) showed that the structure with slab-column connections without beams exhibited the most critical response.

SHAKING TABLE TEST OF STEEL FRAME STRUCTURES SUBJECTED TO SCENARIO EARTHQUAKES

  • CHOI IN-KlL;KIM MIN KYU;CHOUN YOUNG-SUN;SEO JEONG-MOON
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.191-200
    • /
    • 2005
  • Shaking table tests of the seismic behavior of a steel frame structure model were performed. The purpose of these tests was to estimate the effects of a near-fault ground motion and a scenario earthquake based on a probabilistic seismic hazard analysis for nuclear power plant structures. Three representative kinds of earthquake ground motions were used for the input motions: the design earthquake ground motion for the Korean nuclear power plants, the scenario earthquakes for Korean nuclear power plant sites, and the near-fault earthquake record from the Chi-Chi earthquake. The probability-based scenario earthquakes were developed for the Korean nuclear power plant sites using the PSHA data. A 4-story steel frame structure was fabricated to perform the tests. Test results showed that the high frequency ground motions of the scenario earthquake did not damage the structure at the nuclear power plant site; however, the ground motions had a serious effect on the equipment installed on the high floors of the building. This shows that the design earthquake is not conservative enough to demonstrate the actual danger to safety related nuclear power plant equipment.

Analysis on the Ballistic and Blast Shock for a Space Frame Structure (내충격 개방형 구조물에 대한 피탄 및 폭압 충격 해석)

  • Joo, Jae-Hyun;Gimm, Hak-In;Koo, Man-Hoi;Park, Jee-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.933-940
    • /
    • 2010
  • A numerical analysis for the space frame structure under ballistic and blast loads was performed using LS-DYNA, a commercial code. The space frame structure was developed to be adapted to the ground vehicle in the future and it was designed to build with Al7039 frames and lightweight multi-layered panels for the purpose of weight reduction and shock mitigation. The analyses have done for side impacts by a cylindrical projectile and Comp. C-4 explosive representing major threats to the vehicle. The deformed shape of the panel section and stresses as well as accelerations of the frames calculated from LS-DYNA were compared to the test results to validate the analysis model. The internal energies for panels and frames from LS-DYNA were also compared to each other to discern their role in absorbing the ballistic and blast impact.

Seismic behavior enhancement of frame structure considering parameter sensitivity of self-centering braces

  • Xu, Longhe;Xie, Xingsi;Yan, Xintong;Li, Zhongxian
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.45-56
    • /
    • 2019
  • A modified mechanical model of pre-pressed spring self-centering energy dissipation (PS-SCED) brace is proposed, and the hysteresis band is distinguished by the indication of relevant state variables. The MDOF frame system equipped with the braces is formulated in an incremental form of linear acceleration method. A multi-objective genetic algorithm (GA) based brace parameter optimization method is developed to obtain an optimal solution from the primary design scheme. Parameter sensitivities derived by the direct differentiation method are used to modify the change rate of parameters in the GA operator. A case study is conducted on a steel braced frame to illustrate the effect of brace parameters on node displacements, and validate the feasibility of the modified mechanical model. The optimization results and computational process information are compared among three cases of different strategies of parameter change as well. The accuracy is also verified by the calculation results of finite element model. This work can help the applications of PS-SCED brace optimization related to parameter sensitivity, and fulfill the systematic design procedure of PS-SCED brace-structure system with completed and prospective consequences.