• 제목/요약/키워드: Frame spraying

검색결과 9건 처리시간 0.022초

스프레이 코팅 기술 (Spray Coating Technology)

  • 이창희
    • 한국분무공학회지
    • /
    • 제13권4호
    • /
    • pp.193-199
    • /
    • 2008
  • Spray coating is a versatile surface modification technology in which coating is built-up based on the successive deposition of micron-scaled particles. Depending on the coating materials, the coatings can meet the required mechanical properties, corrosion resistance, and other properties of base materials. Spraying processes are mainly classified into thermal and kinetic spraying according to their bonding mechanism and deposition characteristics. Specifically, thermal spraying process can be further classified into many categories based on the design and mechanism of the process, such as frame spraying, arc spraying, atmospheric plasma spraying (APS), and high velocity oxygen-fuel (HVOF) spraying, etc. Kinetic spraying or cold gas dynamic spraying is a newly emerging coating technique which is low-temperature and high-pressure coating process. In this paper, overall view of thermal and kinetic spray coating technologies is discussed in terms of fundamentals and industrial applications. The technological characteristics and bonding mechanism of each process are introduced. Deposition behavior and properties of technologically remarkable materials are reviewed. Furthermore, industrial applications of spray coating technology and its potentials are prospected.

  • PDF

광폭면 분무를 위한 2유체 노즐의 분무 특성에 관한 연구 (An Experimental Study on the Spray Characteristics by Twin-Fluid Atomizer for Wide Band Spray)

  • 이중순
    • 한국분무공학회지
    • /
    • 제13권4호
    • /
    • pp.212-219
    • /
    • 2008
  • To develop the twin-fluid atomizer having the excellent performance of painting, the spray characteristics of how a wide area can be painted efficiently by one time spraying were studied in this paper. Spray phenomena are affected by the many factors determining the spray field such as the spraying pressure of gas, the spraying pressure and viscosity of liquid paints, the opening duration of needle valve, the design dimension of nozzle, and so on. As the results of experiments, these factors affecting on spray characteristics were suggested as followings; 1) The optimum spraying pressure of gas was $0.015{\sim}0.02\;kPa$, and the appropriate spraying pressure of liquid paint was 0.01kPa, In these situations, the setting up pressures must be compensated as much as the losing amount of pressure because a decompression occurred when operating valves. 2) The duration of opening the needle valve must be sustained for $1{\sim}2$ seconds to inject gas after spraying the liquid paint. This operating of the needle valve was necessary to avoid the affect on the changing of liquid column length, and to prevent the droplet deposit at the initial time of spraying. 3) The spray tip penetration was gained form the experimental equation, and the effective spraying angle was $85^{\circ}{\pm}5^{\circ}$ just at he appropriate spraying pressure of gas. The distribution of the area sprayed had the variation in $350{\pm}50\;mm$ because of the spraying pressure of gas, the its distance from the spray tip, and the lift of the needle valve.

  • PDF

Synthesis of Ceramic Protective Coatings for Chemical Plant Parts Operated in Hi-temperature and Corrosive/Erosive Environment

  • Son, M.C.;Park, J.R.;Hong, K.T.;Seok, H.K.
    • Corrosion Science and Technology
    • /
    • 제4권1호
    • /
    • pp.33-38
    • /
    • 2005
  • Some feasibility studies are conducted to produce an advanced ceramic coating, which reveals superior chemical and mechanical strength, on metal base structure used in chemical plant. This advanced coating on metallic frame can replace ceramic delivery pipe and reaction chamber used in chemical plant, which are operated in hi-temperature and corrosive/erosive environment. An dual spraying is adopted to reduce the residual stress in order to increase the coating thickness and the residual stress is estimated by in-situ manner. Then new methodology is tried to form special coating of yttrium aluminum garnet(YAG), which reveals hi-strength and low-creep rates at hi-temperature, superior anti-corrosion property, hi-stability against Alkali-Vapor corrosion, and so on, on iron base structure. To verify the formation of YAG during thermal spraying, XRD(X ray diffraction) technique was used.

$Al_2O_3$세라믹 용사피막의 특성개선에 관한 연구 (A Study on the Improvement of Properties of Sprayed $Al_2O_3$ Ceramic Coating Layer.)

  • 김정일;이주원;최영국;김영식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.49-58
    • /
    • 2000
  • Thermal spraying is one of the most common surface coating techniques to be used for many applications and flame spraying covers a wide range of different materials which can be coated onto various substrates. The purpose of this study is to investigate the effects of mixed ratio in composite coatings on the mechanical and anti-corrosion properties. The five different types of composite coatings were made with $Al_2O_3$ ceramic and Ni-alloy powder on the mild steel substrate by flame spraying method. The mechanical properties such as microhardness, adhesive strength and erosion resistance and corrosion resistance were tested for the sprayed coating specimens. The results obtained are summarized as follows; 1. The composite coating layers greatly improve the microstructure, erosion resistance and adhesive strength by increasing the content of Ni-Al alloy. 2. Microhardness of the compsite coating layer is decreased by increasing the content of Ni-Al alloy. 3. The anti-corrosion properties is considerably improved by increasing the compsite rate of Ni-Al alloy.

  • PDF

컴퓨터 시각에 의한 분무입자 크기와 분무량 측정법 개발 (Development of a Method to Measure Droplet Size and Spray Deposition Using Computer Vision)

  • 서상룡;김태환;성제훈;정종훈;유수남
    • Journal of Biosystems Engineering
    • /
    • 제19권4호
    • /
    • pp.369-379
    • /
    • 1994
  • A computer vision system consisted of a microscope, a CCD camera, a frame grabber and a personal computer was used to analyze spraying pattern. An algorithm was developed for the system to measure size of droplets including overlapped droplets, to count number of droplets, and to estimate spray deposition in a certain area from the data obtained. A series of experiment was carried out to test validity of the algorithm. The experiment resulted that accuracy of the droplet size measurement, accuracy of counting the number of droplets and the estimation of spray deposition were within an acceptable range. It was concluded from the results that the computer vision system operated by the developed algorithm is very useful tool to analyze spraying pattern.

  • PDF

활성백토 첨가율에 따른 기능성 발열도료의 특성 (Properties of Functional Heating Paints according to Additional Ratio of Activated Clay)

  • 이주원;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.35-36
    • /
    • 2023
  • Safety management of steel frame members is a very important part to maintain safety and function. However, precise inspection is not possible for steel frame members due to finishing materials and insulation materials, leading to poor inspection. For steel members, an insulating spray coating method is used for high thermal conductivity. The insulation spray method is not only uneconomical, but also has the disadvantage of spoiling the aesthetics. In addition, VOCs are released from paints used in spraying, so a solution is needed. In this study, heating paint was used to improve the disadvantages of the insulation spray coating method and the high thermal conductivity of steel frame members. In addition to this, in order to reduce VOCs generated from the paint, active clay was added to produce a functional exothermic paint, and then the experiment was conducted. As the amount of activated clay increased, the film thickness increased, and the VOCs emission and thermal conductivity decreased.

  • PDF

FIELD CONTROL MACHINE IN THE RECYCLED VINYL RAIL

  • I. J. Jang;S. S. Do;Park, Y. W.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.722-728
    • /
    • 2000
  • This study of field control machine in the recycled vinyl rail is gantry crane type and promoting agricultural automatization through self-controlled spraying, harvesting and conveyance. In addition to, that control machine could get a cost and labor reduction effect through automatization and make better environment by preventing farmers from agrichemical damage, accidents and recycling wasted vinyl. That machine is able to be divided as traveling, spraying, harvesting and conveyance sections. In driving section consists of girder frame, carrier, rail, control system, driving system, working machine, rail and loading device for working machine. This machine has following advantages to be able to bring a big innovation in the agricultural industry. I) Accurate performance is able to be done by proper positioning due to based on the rails. 2) The soil is not made hard like heavy tractor 3) The wheel is not sank into the soil and slipped well under rain like heavy tractor. Therefore, weather and soil situation could not affect working condition. 4) Complete unmanned control and 24hours-working are available due to traveling on the rails. 5) It could use various energy resources like not only liquid fuel but also solar, common electronic power due to traveling on the rails.

  • PDF

Development of Autonomous Sprayer Considering Tracking Performance on Geometrical Complexity of Ground in Greenhouse

  • Lee, Dong Hoon;Lee, Kyou Seung;Cho, Yong Jin;Lee, Je Yong;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • 제37권5호
    • /
    • pp.287-295
    • /
    • 2012
  • Purpose: Some of the most representative approaches are to apply next generation technologies to save energy consumption, fully automated control system to appropriately maintain environmental conditions, and autonomous assistance system to reduce labor load and ensure operator's safety. Nevertheless, improvement of upcoming method for soil cultured greenhouse has not been sufficiently achieved. Geometrical complexity of ground in protected crop cultivation might be one of the most dominant factors in design of autonomous vehicle. While there is a practical solution fairly enough to promise an accurate travelling, such as autonomous sprayer guided by rail or induction coil, for various reasons including the limitation of producer's budget, the previously developed sprayer has not been widely distributed to market. Methods: In this study, we developed an autonomous sprayer considering travelling performance on geometrical complexity of ground in soil cultured greenhouse. To maintain a stable travelling and to acquire a real time feedback, common wire with 80 mm thick and body frame and sprayer boom. To evaluate performance of the prototype, tracking performance, climbing performance and spraying boom's uniform leveling performance were individually evaluated by corresponding experimental tests. Results: The autonomous guidance system was proved to be sufficiently suitable for accurate linear traveling with RMS as lower than approximately 10 cm from designated path. Also the prototype could climb $10^{\circ}$ of ground's slope angle with 40 kg of water weight. Uniform leveling of spraying boom was successfully performed within $0.5^{\circ}$ of sprayer boom's slope. Conclusions: Considering more complex pathways and coarse ground conditions, evaluations and improvements of the prototype should be performed for promising reliability to commercialization.

농업용 방제드론의 방제면적 산출에 따른 실험적 검증 (Experimental Vrification of the Sray Clculation using the Aricultural Done)

  • 이우람
    • 문화기술의 융합
    • /
    • 제9권4호
    • /
    • pp.569-576
    • /
    • 2023
  • 농업용 드론은 경제적 효율성으로 인해 활용도가 점차 증가하고 있으며, 비행을 담당하는 본체와 약제를 방제 대상까지 전달하는 임무를 담당하는 분무 시스템으로 구성되어 있다. 따라서 드론을 활용한 농약 방제 작업 시 농작물에 대한 환경과 특성이 고려되어야 하며, 이에 따른 체계화된 비행 고도, 속도 및 분사 시간 등 조건이 달라져야 한다. 농업용 드론을 이용한 방제 작업은 조종자의 운용에 의존하고 있으며, 운용 숙련도에 따라 살포 효과 및 영향에 차이가 발생한다. 또한 농업용 드론에 관해 운용 기준 및 방제 효율 등의 편차가 발생하여 방제 작업 분야에서 농업용 방제 드론의 보급을 저해하는 요소로 작용하고 있다. 이에 본 연구에서는 농업용 드론의 살포 특성을 파악하여 유효 살포 시간 및 간격을 적용하고, 선행 연구와 비교하여 방제면적 산출이 가능한 체계를 실험적으로 검증하려 한다. 이러한 실험적 검증을 통해 농업용 드론에 운용 방식 및 체계화된 수치를 적용하여, 방제 작업의 저해요인을 최소화하여 최적의 방제 공정을 적용하고자 한다.