• 제목/요약/키워드: Frame Stress

검색결과 653건 처리시간 0.03초

Simulation of corroded RC structures using a three-dimensional irregular lattice model

  • Kim, Kunhwi;Bolander, John E.;Lim, Yun Mook
    • Structural Engineering and Mechanics
    • /
    • 제41권5호
    • /
    • pp.645-662
    • /
    • 2012
  • Deteriorative effects of steel corrosion on the structural response of reinforced concrete are simulated for varying degrees of corrosion. The simulation approach is based on a three-dimensional irregular lattice model of the bulk concrete, in which fracture is modeled using a crack band approach that conserves fracture energy. Frame elements and bond link elements represent the reinforcing steel and its interface with the concrete, respectively. Polylinear stress-slip properties of the link elements are determined, for several degrees of corrosion, through comparisons with direct pullout tests reported in the literature. The link properties are then used for the lattice modeling of reinforced concrete beams with similar degrees of corrosion of the main reinforcing steel. The model is successful in simulating several important effects of steel corrosion, including increased deflections, changes in flexural cracking behavior, and reduced yield load of the beam specimens.

한국형 고속전철용 견인전동기 개발 (Development of the Traction Motor for High Speed Train)

  • 이상우;윤종학;최종묵;박계서
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.427-433
    • /
    • 2002
  • An inverter-driven induction motor is usually adapted to the traction motor for a high speed drive system requiring safety, reliability, performance, compact size owing to the space and weight alloted for attaching to train, etc. and AC Traction motor for G7 train will be operated in the worst condition such as mechanical vibration, limited mounting space, severe thermal stress, inverter with non-sinusoidal voltage waveform, dust and so on. therefore, design procedure must be carefully carried out wi th considering the motor size, vibration and thermal expansion of rotor bars, insulation system, reliability of frame, as well as output characteristics. In this paper, we will inform the characteristics and design of the traction motor for G7 train and also analyze the test result of it.

  • PDF

Optimum design of steel frames with semi-rigid connections using Big Bang-Big Crunch method

  • Rafiee, A.;Talatahari, S.;Hadidi, A.
    • Steel and Composite Structures
    • /
    • 제14권5호
    • /
    • pp.431-451
    • /
    • 2013
  • The Big Bang-Big Crunch (BB-BC) optimization algorithm is developed for optimal design of non-linear steel frames with semi-rigid beam-to-column connections. The design algorithm obtains the minimum total cost which comprises total member plus connection costs by selecting suitable sections. Displacement and stress constraints together with the geometry constraints are imposed on the frame in the optimum design procedure. In addition, non-linear analyses considering the P-${\Delta}$ effects of beam-column members are performed during the optimization process. Three design examples with various types of connections are presented and the results show the efficiency of using semi-rigid connection models in comparing to rigid connections. The obtained optimum semi-rigid frames are more economical solutions and lead to more realistic predictions of response and strength of the structure.

이형 하부다이아프램으로 보강된 각형 CFT 기둥-보 접합부의 내진성능에 관한 연구 (A Study on Seismic Performance for CFT Square Column-to-Beam Connections Reinforced with Asymmetric Lower Diaphragms)

  • 최성모;윤여상;김요숙;김진호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.163-171
    • /
    • 2003
  • Most of existing beam-to-column connections are reinforced symmetrically because of reverse action cause by earthquake but in the weak-earthquake region like Korea connections reinforced asymmetrically can be used. Specially, the connections between CFT(Concrete Filled Tube) column and H-shape beam can be applied by simplified lower diaphragm. The tensile capacity of Combined Cross Diaphragm for upper reinforcing was tested by simple tension test and four types for lower reinforcing; Combined Cross, None, Horizontal T-bar and Vertical Plate were tested by ANSI/AISC SSPEC 2002 loading program. Horizontal T-bar and stud bolts in vertical flat bar transmit tensile stress from bottom flange of beam to filled concrete. All test specimens were satisfied 0.01 radian of inelastic rotational requirement in ordinary moment frame of AISC seismic provision. As the results of parametric studies, simplified lower diaphragms demonstrated an outstanding strength, stiffness and plastic deformation capacity to use sufficient seismic performance in the field.

  • PDF

A variable layering system for nonlinear analysis of reinforced concrete plane frames

  • Shuraim, Ahmed B.
    • Structural Engineering and Mechanics
    • /
    • 제11권1호
    • /
    • pp.17-34
    • /
    • 2001
  • An improved method has been developed for the computation of the section forces and stiffness in nonlinear finite element analysis of RC plane frames. The need for a new approach arises because the conventional technique may have a questionable level of efficiency if a large number of layers is specified and a questionable level of accuracy if a smaller number is used. The proposed technique is based on automatically dividing the section into zones of similar state of stress and tangent modulus and then numerically integrating within each zone to evaluate the sectional stiffness parameters and forces. In the new system, the size, number and location of the layers vary with the state of the strains in the cross section. The proposed method shows a significant improvement in time requirement and accuracy in comparison with the conventional layered approach. The computer program based on the new technique has been used successfully to predict the experimental load-deflection response of a RC frame and good agreement with test and other numerical results have been obtained.

Optimum design of steel space frames with composite beams using genetic algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.503-519
    • /
    • 2015
  • This paper presents an optimization process using Genetic Algorithm (GA) for minimum weight by selecting suitable standard sections from a specified list taken from American Institute of Steel Construction (AISC). The stress constraints obeying AISC-LRFD (American Institute of Steel Construction-Load and Resistance Factor Design), lateral displacement constraints being the top and inter-storey drift, mid-span deflection constraints for the beams and geometric constraints are considered for optimum design by using GA that mimics biological processes. Optimum designs for three different space frames taken from the literature are carried out first without considering concrete slab effects in finite element analyses for the constraints above and the results are compared with the ones available in literature. The same optimization procedures are then repeated for the case of space frames with composite (steel and concrete) beams. A program is coded in MATLAB for the optimization processes. Results obtained in the study showed that consideration of the contribution of the concrete on the behavior of the floor beams results with less steel weight and ends up with more economical designs.

Tubular composite beam-columns of annular cross-sections and their design practice

  • Kvedaras, A.K.;Kudzys, A.
    • Steel and Composite Structures
    • /
    • 제10권2호
    • /
    • pp.109-128
    • /
    • 2010
  • The expediency of using tubular composite steel and concrete columns of annular cross-sections in construction is discussed. The new type space framework with tubular composite columns of multi-storey buildings and its rigid beam-column joints are demonstrated. The features of interaction between the circular steel tube and spun concrete stress-strain states during the concentrical and eccentrical loading of tubular composite members are considered. The modeling of the bearing capacity of beam-columns of composite annular cross-sections is based on the concepts of bending with a concentrical force and compression with a bending moment. The comparison of modeling results for the composite cross-sections of beam-columns is analysed. The expediency of using these concepts for the limit state verification of beam-columns in the methods of the partial safety factors design (PSFD) legitimated in Europe and the load and resistance factors design (LRFD) used in other countries is presented and illustrated by a numerical example.

Introduction of Prediction Method of Welding Deformation by Using Laminated Beam Modeling Theory and Its Application to Railway Rolling Stock

  • Mun, Hyung-Suk;Jang, Chang-Doo
    • International Journal of Railway
    • /
    • 제2권4호
    • /
    • pp.175-179
    • /
    • 2009
  • The welding deformation and its prediction method at the HAZ (Heat-Affected Zone) are presented in this paper. The inherent strain method is well known as analytical method to predict welding deformation of large scale welded structure. Depend on the size of welding deformation in welding joints, the fatigue life, the stress concentration factor and the manufacturing quality of welded structure are decided. Many welded joints and its manufacturing control techniques are also required to railway rolling stock and its structural parts such as railway carbody and bogie frame. Proposed methods in this paper focus on the two different the inherent strain area at HAZ. This is main idea of proposed method and it makes more reliable result of welding deformation analysis at the HAZ.

  • PDF

내진성능평가시 횡보강근이 없는 RC 보-기둥 접합부의 전단내력 평가 (Seismic Assessment of Shear Capacity of RC Beam-Column Joints Without Transverse Re-bars)

  • 이영욱
    • 한국지진공학회논문집
    • /
    • 제23권5호
    • /
    • pp.249-259
    • /
    • 2019
  • To study the seismic resistance of the shear capacity of the RC beam-column joints of two-story and four-story RC buildings, sample buildings are designed with ordinary moment resisting frame. For the shear capacity of joints, the equations of FEMA 356 and NZ seismic assessment are selected and compared. For comparison, one group of buildings is designed only for gravity loads and the other group is designed for seismic and gravity loads. For 16 cases of the designed buildings, seismic performance point is evaluated through push-over analysis and the capacity of joint shear strength is checked. Not only for the gravity designed buildings but also for seismic designed buildings, the demand of joint shear is exceeding the capacity at exterior joints. However, for interior joint, the demand of joint shear exceeds the capacity only for one case. At exterior joints, the axial load stress ratio is lower than 0.21 for gravity designed buildings and 0.13 for seismic designed buildings.

Nonlinear finite element model updating with a decentralized approach

  • Ni, P.H.;Ye, X.W.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.683-692
    • /
    • 2019
  • Traditional damage detection methods for nonlinear structures are often based on simplified models, such as the mass-spring-damper and shear-building models, which are insufficient for predicting the vibration responses of a real structure. Conventional global nonlinear finite element model updating methods are computationally intensive and time consuming. Thus, they cannot be applied to practical structures. A decentralized approach for identifying the nonlinear material parameters is proposed in this study. With this technique, a structure is divided into several small zones on the basis of its structural configuration. The unknown material parameters and measured vibration responses are then divided into several subsets accordingly. The structural parameters of each subset are then updated using the vibration responses of the subset with the Newton-successive-over-relaxation (SOR) method. A reinforced concrete and steel frame structure subjected to earthquake loading is used to verify the effectiveness and accuracy of the proposed method. The parameters in the material constitutive model, such as compressive strength, initial tangent stiffness and yielding stress, are identified accurately and efficiently compared with the global nonlinear model updating approach.