• 제목/요약/키워드: Frame Stress

검색결과 653건 처리시간 0.026초

동일입자추적기법을 이용한 트랜섬선미 후류 난류유동특성에 관한 연구 (A Study on the Turbulent Flow Characteristics in the Wake of Transom Sterns using PIV Method)

  • 이경우;김옥석
    • 해양환경안전학회지
    • /
    • 제18권4호
    • /
    • pp.352-359
    • /
    • 2012
  • 본 연구에서는 트랜섬 선미 후류 난류유동 특성을 알아보기 위하여 Re = $3.5{\times}10^3$ 및 Re = $7.0{\times}10^3$에서 2-프레임 그레이레벨 상호상관 PIV기법을 적용하여 실험을 수행하였다. 트랜섬 선미의 형상은 선저와 트랜섬이 이루는 각을 기준으로 $45^{\circ}$(모델 A), $90^{\circ}$(모델 B) 및 $135^{\circ}$(모델 C)로 구분하여 적용하였다. 모델의 침수깊이는 40 mm로 자유수면과 접하도록 설치하였다. 난류유동을 평균하여 난류강도, 레이놀즈 응력, 난류운동에너지에 대한 통계적 유동정보를 제공하였다. 난류강도는 자유수면과 모델의 하부 박리유동과의 상호작용으로 강하게 작용하며, 레이놀즈 응력과 난류운동에너지는 모델 C형(Raked transom)에서 낮은 분포가 나타났다.

연직 및 횡하중이 작용하는 상부벽식-하부골조구조물의 벽체 배치유형에 따른 거동 해석 (Behavior Analysis According to the Shear Wall Layout of Column-Supported Wall System Subject to Vertical and Lateral Loads)

  • 이대현;김호수
    • 한국공간구조학회논문집
    • /
    • 제4권2호
    • /
    • pp.53-61
    • /
    • 2004
  • 최근 도심지에 건설되고 있는 대부분의 주상복합건물과 아파트들은 다양한 공간을 구성하기 위해 주로 복합구조형식을 채택하고 있다. 특히, 이러한 구조형식들 중의 하나인 상부벽식-하부골조시스템은 전이층에서 서로 연결되는 전단벽형식과 골조형식을 모두 포함하고 있다. 그러나 이 시스템은 구조적인 안전성 측면에서 볼 때 매우 불합리하며, 전이층에서의 응력분포를 파악하기 매우 어렵다. 따라서 본 연구에서는 연직 및 정적 횡하중이 작용하는 전이보 시스템의 전단벽 배치에 따른 구조적인 거동과 응력분포를 분석하고자 함에 있으며, 또한 해석결과를 바탕으로 전이층부근에서의 하중의 전달경로 및 응력집중현상을 파악하고, 전단벽과 전이보의 효율적인 설계를 위한 방안을 제시하고자 한다.

  • PDF

Isolation and Characterization of a cDNA Encoding Two Novel Heat-shock Factor OsHSF6 and OsHSF12 in Oryza Sativa L.

  • Liu, Jin-Ge;Yao, Quan-Hong;Zhang, Zhen;Peng, Ri-He;Xiong, Ai-Sheng;Xu, Fang;Zhu, Hong
    • BMB Reports
    • /
    • 제38권5호
    • /
    • pp.602-608
    • /
    • 2005
  • As a crucial transcription factor family, heat-shock factors were mainly analyzed and characterized in tomato and Arabidopsis. In this study, we isolated two putative heat shock factors OsHSF6 and OsHSF12 that interact specifically with heat-shock element (HSE) from Oryza sativa L by yeast one-hybrid method. The full-length cDNA of OsHSF6 and OsHSF12 have 1074bp and 920bp open reading frame (ORF), respectively. Analysis of the deduced amino acid sequences revealed that OsHSF6 was a class A heat shock factor (HSF) with all the conserved sequence elements characteristic of heat stress transcription factor, while OsHSF12 was a class B HSF with C-terminal domain (CTD) lacking of AHA motif. Bioinformatic analysis showed that the sequences and structures of two HSFs' DNA binding domain (DBD) had a high similarity with LpHSF24. The results of RT-PCR indicated OsHSF6 gene was expressed immediately after rice plants exposure to heat stress, and the transcription of OsHSF6 gene accumulated primarily in immature seeds, roots and leaves. However, we did not find the transcription of OsHSF12 gene in different organs and growth periods. Our results implied that OsHSF6 might be function as a HSF regulating early expression of stress genes in response to heat shock, and OsHSF12 might be act as a synergistic factor to regulate the expression of down-stream genes.

Over-expression of BvMTSH, a fusion gene for maltooligosyltrehalose synthase and maltooligosyltrehalose trehalohydrolase, enhances drought tolerance in transgenic rice

  • Joo, Joungsu;Choi, Hae Jong;Lee, Youn Hab;Lee, Sarah;Lee, Choong Hwan;Kim, Chung Ho;Cheong, Jong-Joo;Choi, Yang Do;Song, Sang Ik
    • BMB Reports
    • /
    • 제47권1호
    • /
    • pp.27-32
    • /
    • 2014
  • Plant abiotic stress tolerance has been modulated by engineering the trehalose synthesis pathway. However, many stress-tolerant plants that have been genetically engineered for the trehalose synthesis pathway also show abnormal development. The metabolic intermediate trehalose 6-phosphate has the potential to cause aberrations in growth. To avoid growth inhibition by trehalose 6-phosphate, we used a gene that encodes a bifunctional in-frame fusion (BvMTSH) of maltooligosyltrehalose synthase (BvMTS) and maltooligosyltrehalose trehalohydrolase (BvMTH) from the nonpathogenic bacterium Brevibacterium helvolum. BvMTS converts maltooligosaccharides into maltooligosyltrehalose and BvMTH releases trehalose. Transgenic rice plants that over-express BvMTSH under the control of the constitutive rice cytochrome c promoter (101MTSH) or the ABA-inducible Ai promoter (105MTSH) show enhanced drought tolerance without growth inhibition. Moreover, 101MTSH and 105MTSH showed an ABA-hyposensitive phenotype in the roots. Our results suggest that over-expression of BvMTSH enhances drought-stress tolerance without any abnormal growth and showes ABA hyposensitive phenotype in the roots.

Molecular Cloning of Insulin-like Growth Factor-I (IGF-I) and IGF-II Genes of Marine Medaka (Oryzias dancena) and Their Expression in Response to Abrupt Transfer from Freshwater to Seawater

  • Kang, Yue-Jai;Kim, Ki-Hong
    • Fisheries and Aquatic Sciences
    • /
    • 제13권3호
    • /
    • pp.224-230
    • /
    • 2010
  • Growth hormone (GH) is known as one of the main osmoregulators in euryhaline teleosts during seawater (SW) adaptation. Many of the physiological actions of GH are mediated through insulin-like growth factor-I (IGF-I), and the GH/IGF-I axis is associated with osmoregulation of fish during SW acclimation. However, little information is available on the response of fish IGF-II to hyperosmotic stress. Here we present the first cloned IGF-I and IGF-II cDNAs of marine medaka, Oryzias dancena, and an analysis of the molecular characteristics of the genes. The marine medaka IGF-I cDNA is 1,340 bp long with a 257-bp 5' untranslated region (UTR), a 528 bp 3' UTR, and a 555-bp open reading frame (ORF) encoding a propeptide of 184 amino acid (aa) residues. The full-length marine medaka IGF-II cDNA consists of a 639 bp ORF encoding 212 aa, a 109 bp 5' UTR, and a 416 bp 3' UTR. Homology comparison of the deduced aa sequences with other IGF-Is and IGF-IIs showed that these genes in marine medaka shared high structural homology with orthologs from other teleost as well as mammalian species, suggesting high conservation of IGFs throughout vertebrates. The IGF-I mRNA level increased following transfer of marine medaka from freshwater (FW) to SW, and the expression level was higher than that of the control group, which was maintained in FW. This significantly elevated IGF-I level was maintained throughout the experiment (14 days), suggesting that in marine medaka, IGF-I is deeply involved in the adaptation to abrupt salinity change. In contrast to IGF-I, the increased level of marine medaka IGF-II mRNA was only maintained for a short period, and quickly returned a level similar to that of the control group, suggesting that marine medaka IGF-II might be a gene that responds to acute stress or one that produces a supplemental protein to assist with the osmoregulatory function of IGF-I during an early phase of salinity change.

The Evaluation of Axial Stress in Continuous Welded Rails via Three-Dimensional Bridge-Track Interaction

  • Manovachirasan, Anaphat;Suthasupradit, Songsak;Choi, Jun-Hyeok;Kim, Bum-Joon;Kim, Ki-Du
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1617-1630
    • /
    • 2018
  • The crucial differences between conventional rail with split-type connectors and continuous welded rails are axial stress in the longitudinal direction and stability, as well as other issues generated under the influence of loading effects. Longitudinal stresses generated in continuously welded rails on railway bridges are strongly influenced by the nonlinear behavior of the supporting system comprising sleepers and ballasts. Thus, the track structure interaction cannot be neglected. The rail-support system mentioned above has properties of non-uniform material distribution and uncertainty of construction quality. The linear elastic hypothesis therefore cannot correctly evaluate the stress distribution within the rails. The aim of this study is to apply the nonlinear finite element method using the nonlinear coupling interface between the track and structural model and to illustrate the welded rail behavior under the loading effect and uncertain factors of the ballast. Numerical results of nonlinear finite analysis with a three-dimensional solid and frame element model are presented for a typical track-bridge system. A composite plate girder, modeled by solid and shell elements, is also analyzed to consider the behavior of the welded rail. The analysis result showed buckling under the independent calculations of load cases, including 'temperature change', 'bending of the supporting structure', and 'braking' of the railway vehicle. A parametric study of the load combination method and the loading sequence is also included in this analysis.

Interaction of internal forces of interior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Jiangli
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.427-443
    • /
    • 2014
  • This paper presents detailed analysis of the internal forces of interior beam-column joints of reinforced concrete (RC) frames under seismic action, identifies critical joint sections, proposes consistent definitions of average joint shear stress and average joint shear strain, derives formulas for calculating average joint shear and joint torque, and reports simplified analysis of the effects of joint shear and torque on the flexural strengths of critical joint sections. Numerical results of internal joint forces and flexural strengths of critical joint sections are presented for a pair of concentric and eccentric interior connections extracted from a seismically designed RC frame. The results indicate that effects of joint shear and torque may reduce the column-to-beam flexural strength ratios to below unity and lead to "joint-yielding mechanism" for seismically designed interior connections. The information presented in this paper aims to provide some new insight into the seismic behavior of interior beam-column joints and form a preliminary basis for analyzing the complicated interaction of internal joint forces.

반복하중을 받는 대형 콘크리트 판구조의 비선형 해석 (Nonlinear Analysis of Large Concrete Panel Structures subjected to Cyclic Loads)

  • 정봉오;서수연;이원호;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.113-120
    • /
    • 1994
  • Large Concrete Panel Structures behave quite differently from frame or monolithic shear wall structures because of the weakness of Joint in stiffness and strength. The joint experiences large deformation such as shear-slip in vertical and horizontal joint and rocking and crushing in horizontal joint because of localized stress concentration, but the wall panels behave elastically under cyclic loads. In order to describe the nonlinear behavior of the joint in the analysis of PC structures, different analysis technique from that of RC structures is needed. In this paper, for analysis of large concrete panel subassemblage subjected to cyclic loads, the wall panels are idealized by elastic finite elements, and the joints by nonlinear spring elements with various load-deflection relationship. The analytical results are compared with the experimental results on the strength, stiffness, energy dissipation and lateral drift, and the effectiveness of this computer analysis modelling technique is checked.

  • PDF

기초지반고가 다른 빌딩의 지진응답해석 (Earthquake Response of Two Adjacent Buildings Founded at Different Depths)

  • Kim, Dong Woo;Lee, Jong Seh
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.397-408
    • /
    • 2004
  • The aim of this paper is to study the interaction between adjacent buildings with different foundation levels under earthquake loading conditions. Buildings and soil are represented by two different models. In the first case, the building itself is modeled with standard frame elements, whereas the soil behavior is simulated by a special grid model, In the second case, the building and soil are represented by plane stress or plane strain elements. The modulus of elasticity of the ground as well as the varying relations of inertia have a strong influence on the section forces within the buildings. The interaction between the two buildings is demonstrated and discussed via numerical examples using the proposed method.

  • PDF

X-ray PIV Measurements of Velocity Field of Blood Flows

  • 이상준
    • 순환기질환의공학회:학술대회논문집
    • /
    • 순환기질환의공학회 2006년도 춘계학술강연회
    • /
    • pp.28-36
    • /
    • 2006
  • The x-ray PIV method was improved for measuring quantitative velocity fields of real blood flows using a coherent synchrotron x-ray source. Without using any contrast media or seeding particles, this method can visualize flow pattern of blood by enhancing the phase-contrast and interference characteristics of blood cells based on a synchrotron x-ray imaging mechanism. The enhanced x-ray images were achieved by optimizing the sample-to-scintillator distance, the sample thickness, and hematocrit. The quantitative velocity fields of blood flows inside opaque tubes were obtained by applying a 2-frame PIV algorithm to the x-ray images of the blood flows. The measured velocity field data show typical features of blood flows such as the yield stress effect. The non-Newtonian flow characteristics of blood flows were analyzed using the x-ray PIV method and the experimental results were compared with hemodynamic models.

  • PDF