• 제목/요약/키워드: Frame Stress

검색결과 652건 처리시간 0.024초

전동 스쿠터 프레임의 구조 진동해석 연구 (Structure-Vibration Analysis of Electric Scooter Frame)

  • 천세영;성기원;박해이;김인수;강성기
    • 한국기계가공학회지
    • /
    • 제15권1호
    • /
    • pp.116-121
    • /
    • 2016
  • The purpose of this study was to ensure the safety of a scooter frame through a structure and vibration analysis according to the tube thickness and weight of the frame of the electric scooter, which is currently being commercialized. According to the results of this study, the largest displacement value of 0.13238mm appeared in the 3-mm thickness when applying the 100-kg load according to the thickness, and 0.026591mm and 0.019062mm appeared in the 4-mm and 5-mm thicknesses, respectively. The difference between the 4-mm and 5-mm values was 0.007529mm, and it showed low displacement. Thus, the frame of more than 4-mm thickness was considered safe. In addition, the experimental result for the natural frequency from Mode 1 to Mode 6 in the vibration analysis was within 601.88Hz. In the 5-mm frame, the durability regarding the vibration was recognized as the best due to the appearance of the critical frequency (341.03Hz).

고효율 갠트리 크레인용 컨베이어 프레임의 구조설계에 관한 연구 (A Study on Structural Design of Conveyor Frame for High Efficiency Gantry Crane)

  • 이성욱;심재준;한동섭;박종서;한근조;이권순;김태형
    • 한국항해항만학회지
    • /
    • 제28권10호
    • /
    • pp.941-946
    • /
    • 2004
  • 본 연구에서는 컨테이너의 하역작업 시간을 단축함으로써 항만 하역 능률을 향상시킬 수 있는 고효율 갠트리 크레인의 필수 구조인 컨베이어 프레임의 구조선계를 수행하였다. 이것은 작업시 프레임 상부에 얹혀지는 컨테이너의 중량과 컨베이어 프레임의 자중으로 인하여 굽혀지게 되므로 본 연구에서는 프레임의 굽힘응력과 처짐이 설정값을 만족하면서 자체의 중량을 최소화할 수 있도록 ANSYS를 이용한 치수 최적화를 통하여 프레임의 두께를 설계하였다.

컨테이너 이송을 위한 LMTT용 셔틀 카의 프레임 치수최적설계 (Optimum Design for the Frame of the Shuttle Car for LMTT to transfer a Container)

  • 한동섭;한근조;이권희;심재준;이성욱
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2005년도 춘계학술대회 논문집
    • /
    • pp.429-432
    • /
    • 2005
  • LMTT(Linear Motor based Transfer Technology)는 크게 제어 부, 셔틀 카, 레일로 구성되며, 항만의 자동화를 위한 컨테이너 부두에서 사용되는 새로운 형태의 이송장치이다. 셔틀카는 다시 프레임 부, 구동 부, 휠로 나뉜다. 이 장치를 설계하기 위하여 각 부품에 대한 다양한 연구가 수행되어져야 한다. 이 논문에서는 가로 보가 프레임의 강도에 미치는 영향에 대한 이전의 연구로부터 기초 설계된 프레임에 대해 항만설계기준을 만족하면서 셔틀카의 무게를 최소화할 수 있는 프레임의 치수 최적설계를 수행하였다. 최적화를 위해 설계변수로 프레임 각 부재의 두께를, 목적함수로 프레임의 무게를, 제약조건으로 설계기준 응력과 처짐을 설정하였다.

  • PDF

유한요소 해석을 이용한 선박용 엔진 프레임 박스 용접부의 피로수명 예측 (Fatigue Life Estimation for Welded Parts of Marine Vessel Engine Frame Box by Utilizing Finite Element Analysis)

  • 이재훈;최종호;조진래;이인수
    • 한국전산구조공학회논문집
    • /
    • 제20권5호
    • /
    • pp.573-580
    • /
    • 2007
  • 본 논문은 선박용 엔진인 S60MC-C의 프레임 박스 용접부에 대한 피로수명 예측을 위한 수치적 기법을 제시한다. 피로 수명 평가를 위해 싸이클 동안의 동적인 응력변화를 계산해내야 하며, 이에 따라 선행된 연구에서 얻은 엔진의 한 싸이클 동안의 하중 조건으로 상용 유한요소해석 프로그램을 이용한 구조해석을 실시하였다. 구조해석은 8단계에 대해 이루어 졌으며, 그 결과를 바탕으로 프레임 박스 용접부의 피로수명 평가를 위해서 HSS(Hot spot stress), Reservoir counting method, Palmgren-miner's rule을 적용하였다. 결과적으로 구조해석을 통한 대상 엔진의 취약부와 과잉 설계부를 확인하였고, 피로수명의 평가를 통해 설계의 적절성 여부를 평가하였다.

Interaction of internal forces of exterior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Zhisheng
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.197-217
    • /
    • 2012
  • Detailed analysis of internal forces of exterior beam-column joints of RC frames under seismic action is reported in this paper. A formula is derived for calculating the average joint shear from the column shears, and a formula is proposed to estimate torque in eccentric joints induced by seismic action. Average joint shear stress and strain are defined consistently for exterior joints, which can be used to establish joint shear constitutive relationship. Numerical results of shear, bending moment and torque in joints induced by seismic action are presented for a pair of concentric and eccentric exterior connections extracted from a seismically designed RC frame, and two sections located at the levels of beam bottom and top reinforcement, respectively, are identified as the critical joint sections for evaluating seismic joint behavior. A simplified analysis of the effects of joint shear and torque on the flexural strengths of the critical joint sections is made for the two connections extracted from the frame, and the results indicate that joint shear and torque induced by a strong earthquake may lead to "joint-hinging" mechanism of seismically designed RC frames.

강재 맨홀뚜껑의 보강구조 해석 (Analysis of Strengthening Structures of Steel Manhole Cover)

  • 김흥규;양영수;배강열
    • Journal of Welding and Joining
    • /
    • 제32권2호
    • /
    • pp.54-62
    • /
    • 2014
  • Manhole cover, which is usually made of grey cast iron and consists of frame and cover, should have enough strength to support the heavy traffic load. The manhole cover made of cast iron has heavy weight to handle manually and is vulnerable to impact force with its brittle characteristics. Moreover, its production process of casting has been regulated in terms of environmental pollution. In this study, steel manhole cover is proposed to substitute the cast cover with a series of structural analyses to confirm its strength to support the test load for manhole cover. The cover of the proposed steel manhole cover is made of thin circular pate and stiffeners below the plate. Rectangular columns and hollow circular plate were selected for the shape of the stiffener. In order to give enough strength for the cover to behave within elastic range in the loading, strengthening structures of the cover were varied with increasing the number and the size of the stiffeners. The results of the analyses revealed that when both the hollow circular stiffener and cross stiffeners were additionally applied at the same time to the steel cover with longitudinal stiffeners, the maximum stress level in the cover could be reduced to that level presented in the cast cover.

The Role of Labour Inspectorates in Tackling the Psychosocial Risks at Work in Europe: Problems and Perspectives

  • Toukas, Dimitrios;Delichas, Miltiadis;Toufekoula, Chryssoula;Spyrouli, Anastasia
    • Safety and Health at Work
    • /
    • 제6권4호
    • /
    • pp.263-267
    • /
    • 2015
  • Significant changes in the past year have taken place in the world of work that are bringing new challenges with regard to employee safety and health. These changes have led to emerging psychosocial risks (PSRs) at work. The risks are primarily linked to how work is designed, organized, and managed, and to the economic and social frame of work. These factors have increased the level of work-related stress and can lead to serious deterioration in mental and physical health. In tackling PSRs, the European labor inspectorates can have an important role by enforcing preventive and/or corrective interventions in the content and context of work. However, to improve working conditions, unilateral interventions in the context and content of work are insufficient and require adopting a common strategy to tackle PSRs, based on a holistic approach. The implementation of a common strategy by the European Labor Inspectorate for tackling PSRs is restricted by the lack of a common legislative frame with regard to PSR evaluation and management, the different levels of labor inspectors' training, and the different levels of employees' and employers' health and safety culture.

Cyclic loading test of abnormal joints in SRC frame-bent main building structure

  • Wang, Bo;Cao, Guorong;Yang, Ke;Dai, Huijuan;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.417-430
    • /
    • 2021
  • Due to functional requirements, SRC column-RC beam abnormal joints with characteristics of strong beam weak column, variable column section, unequal beam height and staggered height exist in the Steel reinforced concrete (SRC) frame-bent main building structure of thermal power plant (TPP). This paper presents the experimental results of these abnormal joints through cyclic loading tests on five specimens with scaling factor of 1/5. The staggered height and whether adding H-shaped steel in beam or not were changing parameters of specimens. The failure patterns, bearing capacity, energy dissipation and ductile performance were analyzed. In addition, the stress mechanism of the abnormal joint was discussed based on the diagonal strut model. The research results showed that the abnormal exterior joints occurred shear failure and column end hinge flexural failure; reducing beam height through adding H-shaped steel in the beam of abnormal exterior joint could improve the crack resistance and ductility; the abnormal interior joints with different staggered heights occurred column ends flexural failure; the joint with larger staggered height had the higher bearing capacity and stiffness, but lower ductility. The concrete compression strut mechanism is still applicable to the abnormal joints in TPP, but it is affected by the abnormal characteristics.

Response of lap splice of reinforcing bars confined by FRP wrapping: application to nonlinear analysis of RC column

  • Pimanmas, Amorn;Thai, Dam Xuan
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.111-129
    • /
    • 2011
  • This paper presents a nonlinear analysis of reinforced concrete column with lap splice confined by FRP wrapping in the critical hinging zone. The steel stress-slip model derived from the tri-uniform bond stress model presented in the companion paper is included in the nonlinear frame analysis to simulate the response of reinforced concrete columns subjected to cyclic displacement reversals. The nonlinear modeling is based on a fiber discretization of an RC column section. Each fiber is modeled as either nonlinear concrete or steel spring, whose load-deformation characteristics are calculated from the section of fiber and material properties. The steel spring that models the reinforcing bars consists of three sub-springs, i.e., steel bar sub-spring, lap splice spring, and anchorage bond-slip spring connected in series from top to bottom. By combining the steel stress versus slip of the lap splice, the stress-deformation of steel bar and the steel stress-slip of bars anchored into the footing, the nonlinear steel spring model is derived. The analytical responses are found to be close to experimental ones. The analysis without lap splice springs included may result in an erroneous overestimation in the strength and ductility of columns.

Cyclic performance and design recommendations of a novel weak-axis reduced beam section connection

  • Lu, Linfeng;Xu, Yinglu;Liu, Jie;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.337-353
    • /
    • 2018
  • In previous weak-axis moment connection tests, brittle fracture always initiated near the edge of the beam flange groove weld due to force flow towards the stiffer column flanges, which is the opposite pattern as strong-axis moment connections. As part of the China NSFC (51278061) study, this paper tested two full-scale novel weak-axis reduced beam section moment connections, including one exterior frame connection specimen SJ-1 under beam end monotonic loading and one interior frame joint specimen SJ-2 under column top cyclic loading. Test results showed that these two specimens were able to satisfy the demands of FEMA-267 (1995) or ANSI/AISC 341-10 (2010) without experiencing brittle fracture. A parametric analysis using the finite element software ABAQUS was carried out to better understand the cyclic performance of the novel weak-axis reduced beam section moment connections, and the influence of the distance between skin plate and reduced beam section, a, the length of the reduced beam section, b, and the cutting depth of the reduced beam section, c, on the cyclic performance was analyzed. It was found that increasing three parametric values reasonably is beneficial to forming beam plastic hinges, and increasing the parameter a is conducive to reducing stress concentration of beam flange groove welds while increasing the parameters b and c can only reduce the peak stress of beam flange groove welds. The rules recommended by FEMA350 (2000) are suitable for designing the proposed weak-axis RBS moment connection, and a proven calculation formulation is given to determine the thickness of skin plate, the key components in the proposed weak-axis connections. Based on the experimental and numerical results, a design procedure for the proposed weak-axis RBS moment connections was developed.