• Title/Summary/Keyword: Frame Design

Search Result 2,936, Processing Time 0.026 seconds

A study on the design for the road bike frame made by carbon fiber materials (나노탄소섬유소재(Carbon fiber)를 활용한 로드형 자전거에서의 프레임 디자인 개발에 관한 연구)

  • Kim, Ki-Tae;Kim, Hyun-Sung;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.178-185
    • /
    • 2017
  • Carbon fiber frames are actively developed for developing carbon fiber frames as the material of the next generation of bicycle frames, and are currently being developed with carbon fiber frames, hardness, shock absorption, light intensity, and strength. The carbon fiber bike models require a premium, differentiated design concept, which is essential to the development of a conceptual and differentiated design, requiring the development of essential structural structures, safety and refinement, and more of their own identity. In this study, a personal and unified image was derived from the research of the needs of consumers and image analysis process and then in the practical design work, the road bike bicycle frame design was proposed targeting the frame on the basis of carbon fiber materials.

Development of Ultralight Composite Wheelchair Frame (초경량 복합재 의자차 차체 개발)

  • 강지호;김수현;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.215-218
    • /
    • 2002
  • In this paper, we applied composite material of high specific stiffness and strength to the fabrication of a folding wheelchair frame for the replacement of conventional metal wheelchair frames. A one-body composite frame was designed and the finite element analysis was performed on this design. Some specimens of joint parts were manufactured and strength test was done. With the results of analysis and test, some modification was done and a prototype was produced.

  • PDF

A Study on the Vibration Characteristics for Safety Design of Vehicle Structure (차량 구조물 안전설계를 위한 진동특성에 관한 연구)

  • 신귀수;이기형
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.13-21
    • /
    • 1998
  • This is a study on the natural vibration characteristics of Vehicle frame. Nowadays, many trucks freight the over-load, do the car designers consider the over-load about 200% in the design. It's necessary to make the model of a vehicle and simulate it for the test of driving condition, durability and vibration behavior before the vehicle is manufactured. If it is possible to make a simulation using the static and dynamic analysis, this is very useful in accomplishing an optimal design of the vehicle. In this paper, we studied the vibration characteristics of a truck body frame. The automobile body frame model for experiment is made smaller than real size frame with the ratio of 1/10. The vibration characteristics of a frame is considered as one of main factors in analyzing and improving the problem for ride comfort, noise and vibration reduction. Therefore, we experimented two method to neglect the nonlinearity. First is bolting and second is welding at the joint section. We compared computer simulation results and experimental data.

  • PDF

Seismic design of steel frames using multi-objective optimization

  • Kaveh, A.;Shojaei, I.;Gholipour, Y.;Rahami, H.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.211-232
    • /
    • 2013
  • In this study a multi-objective optimization problem is solved. The objectives used here include simultaneous minimum construction cost in term of sections weight, minimum structural damage using a damage index, and minimum non-structural damage in term of inter-story drift under the applied ground motions. A high-speed and low-error neural network is trained and employed in the process of optimization to estimate the results of non-linear time history analysis. This approach can be utilized for all steel or concrete frame structures. In this study, the optimal design of a planar eccentric braced steel frame is performed with great detail, using the presented multi-objective algorithm with a discrete population and then a moment resisting frame is solved as a supplementary example.

Experimental research on seismic behavior of a composite RCS frame

  • Men, Jinjie;Zhang, Yarong;Guo, Zhifeng;Shi, Qingxuan
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.971-983
    • /
    • 2015
  • To promote greater acceptance and use of composite RCS systems, a two-bay two-story frame specimen with improved composite RCS joint details was tested in the laboratory under reversed cyclic loading. The test revealed superior seismic performance with stable load versus story drift response and excellent deformation capacity for an inter-story drift ratio up to 1/25. It was found that the failure process of the frame meets the strong-column weak-beam criterion. Furthermore, cracking inter-story drift ratio and ultimate inter-story drift ratio both satisfy the limitation prescribed by the design code. Additionally, inter-story drift ratios at yielding and peak load stage provide reference data for Performance-Based Seismic Design (PBSD) approaches for composite RCS frames. An advantage over conventional reinforced concrete and steel moment frame systems is that the displacement ductility coefficient of the RCS frame system is much larger. To conclude, the test results prove that composite RCS frame systems perform satisfactorily under simulated earthquake action, which further validates the reliability of this innovative system. Based on the test result, some suggestions are presented for the design of composite RCS frame systems.

Evaluation of seismic strengthening techniques for non-ductile soft-story RC frame

  • Karki, Prajwol;Oinam, Romanbabu M.;Sahoo, Dipti Ranjan
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.423-435
    • /
    • 2020
  • Open ground story (OGS) reinforced concrete (RC) buildings are vulnerable to the complete collapse or severe damages under seismic actions. This study investigates the effectiveness of four different strengthening techniques representing the local and global modifications to improve the seismic performance of a non-ductile RC OGS frame. Steel caging and concrete jacketing methods of column strengthening are considered as the local modification techniques, whereas steel bracing and RC shear wall systems are selected as the global strengthening techniques in this study. Performance-based plastic design (PBPD) approach relying on energy-balance concept has been adopted to determine the required design force demand on the strengthening elements. Nonlinear static and dynamic analyses are carried out on the numerical models of study frames to assess the effectiveness of selected strengthening techniques in improving the seismic performance of OGS frame.. Strengthening techniques based on steel braces and RC shear wall significantly reduced the peak interstory drift response of the OGS frame. However, the peak floor acceleration of these strengthened frames is amplified by more than 2.5 times as compared to that of unstrengthened frame. Steel caging technique of column strengthening resulted in a reasonable reduction in the peak interstory drift response without substantial amplification in peak floor acceleration of the OSG frame.

A Study on CAE for the Design of the Seat Frame of Fiber-reinforced Composite Material (첨단섬유강화 복합재료 시트프레임 설계를 위한 CAE 연구)

  • 허용정;이순홍;최금호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.933-937
    • /
    • 1995
  • The design of injection molded prlymeric parts has been done empirically, since it requires profound knowledge about the moldability and causal effects on the properties of the parts. This study shows CAE approach for the design of the seat frame of fiber-reinforced composite material in order to realize the concept os rationsl design for the productivity and quality of mold making. The knowledge-based CAE system is constructed by adding the knowledge-basw module for the design evaluation and appropriate CAE programs for mold design analysis in order to provied designers, at the initial design stage, with comprehensive process knowledge for the performance analysis and the design evaluation. A knowledge-based CAE system is a new tool which enables the concurrent design with integrated and balanced design decisions at the initial design stage of injection molding.

  • PDF

The Mechanical Modeling and design of saw frame in band sawing machine (띠톱기계 톱대의 역학적 모델링 및 설계)

  • LUO, luPing;DING, zelin;DING, shengxia;JIANG, Ping;FAN, li;XIAO, leihua;PAN, bosong;An, Boyoung;No, Joonkkyu;Li, Wenqi;Han, Changsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.390-397
    • /
    • 2019
  • A mechanical model of band sawing saw frame was established according to an analysis of a commonly used saw-frame structure diagram to overcome the problems of low service life, substandard cutting precision and efficiency, and high manufacturing cost caused by the unreasonable design of saw frame. Taking a particular type of sawing machine as an example, stress cycle analysis of the saw blade was carried out according to the mechanical model of the saw frame, and the fatigue analysis model of the most dangerous cross-section point that was most prone to fatigue failure of the saw blade was then established. The fatigue analysis result was used as the basis for the improved design of the saw frame, and the improved detailed saw-frame design parameters were obtained. The results suggested that the saw frame system is much more compact and the saw blade force met the fatigue strength requirements through the improved design. In addition, the service life of the saw blade and the cutting precision were increased. The established mechanical model of the saw frame in this paper is used widely and has high practical application values.

Development of a Tool for the Electrical Analysis and Design of TFT/LCD System Package (TFT/LCD 시스템 패키지 전기적 특성 분석 및 설계도구의 구현)

  • Yim, Ho-Nam;Jee, Yong
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.149-158
    • /
    • 1995
  • This paper describes the development of a software tool LCD FRAME that may guide the analyzing process for the electrical characteristics and the design procedure for constructing the thin film transistor liquid crystal display(TFT/LCD) packages. LCD FRAME can analyze its electrical characteristics from the TFT/LCD system package configuration, and provide the design variables to meet the user's requirements. These analysis and design procedure can be done in real time according to the model at simplified package level of TFT/LCD. LCD_FRAME is an object-oriented expert system which considers package elements as objects. With this LCD_FRAME software tool, we analyzed the I-V characteristics of a-Si TFT and its signal distortion which has maximum 1.58 $\mu$s delay along the panel scan line of the package containing 480 ${\times}$ 240 pixels. We designed the package structure of maximum 6.35 $\mu$s signal delays and 3360 ${\times}$ 780 pixels, and as a result we showed that the proper structure of 20 $\mu$m scan line width, 60$\mu$m panel TFT gate width and 8 $\mu$m gate length. This LCD_FRAME software tool provides results of the analysis and the design in the form of input files of the SPICE program, text data files, and graphic charts.

  • PDF

Analysis of the Tolerance Effects of Main Design Parameters on the Vibration Characteristics of a Vehicle Sub-frame (차량 서브프레임의 진동특성에 미치는 주요 설계변수 공차의 영향 분석)

  • Kim, Bum-Suk;Kim, Bong-Soo;Yoo, Hong-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.100-105
    • /
    • 2008
  • In the design process of an automobile part, several analysis methods are usually utilized to evaluate the performance of the part. However, most automobile design engineers do not directly utilize CAE (Computer Aided Engineering) tools since specific skills are required to obtain practical results. Moreover, CAE requires a huge amount of computation time and cost. In order to resolve these problems, a new design approach named First Order Analysis (FOA) technique has been proposed. In this paper, the FOA technique is employed to design a vehicle sub-frame. An equivalent model of the vehicle sub-frame which only consists of beam elements is proposed and the modal properties obtained with the model are compared to those obtained with a full scale finite element model. The effect of some parameter tolerances on the modal characteristics of the vehicle sub-frame is investigated by employing the FOA equivalent model.