• Title/Summary/Keyword: Fragility

Search Result 679, Processing Time 0.024 seconds

Fragility assessment of RC-MRFs under concurrent vertical-horizontal seismic action effects

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Mansouri, Babak
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.99-123
    • /
    • 2015
  • In this study, structural vulnerability of reinforced concrete moment resisting frames (RC-MRFs) by considering the Iran-specific characteristics is investigated to manage the earthquake risk in terms of multicomponent seismic excitations. Low and medium rise RC-MRFs, which constitute approximately 80-90% of the total buildings stock in Iran, are focused in this fragility-based assessment. The seismic design of 3-12 story RC-MRFs are carried out according to the Iranian Code of Practice for Seismic Resistant Design of Buildings (Standard No. 2800), and the analytical models are formed accordingly in open source nonlinear platforms. Frame structures are categorized in three subclasses according to the specific characteristics of construction practice and the observed seismic performance after major earthquakes in Iran. Both far and near fields' ground motions have been considered in the fragility estimation. An optimal intensity measure (IM) called Sa, avg and beta probability distribution were used to obtain reliable fragility-based database for earthquake damage and loss estimation of RC buildings stock in urban areas of Iran. Nonlinear incremental dynamic analyses by means of lumped-parameter based structural models have been simulated and performed to extract the fragility curves. Approximate confidence bounds are developed to represent the epistemic uncertainties inherent in the fragility estimations. Consequently, it's shown that including vertical ground motion in the analysis is highly recommended for reliable seismic assessment of RC buildings.

The effect of structural variability and local site conditions on building fragility functions

  • Sisi, Aida Azari;Erberik, Murat A.;Askan, Aysegul
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.285-295
    • /
    • 2018
  • In this study, the effect of local site conditions (site class and site amplifications) and structural variability are investigated on fragility functions of typical building structures. The study area is chosen as Eastern Turkey. The fragility functions are developed using site-specific uniform hazard spectrum (UHS). The site-specific UHS is obtained based on simulated ground motions. The implementation of ground motion simulation into seismic hazard assessment has the advantage of investigating detailed local site effects. The typical residential buildings in Erzincan are represented by equivalent single degree of freedom systems (ESDOFs). Predictive equations are accomplished for structural seismic demands of ESDOFs to derive fragility functions in a straightforward manner. To study the sensitivity of fragility curves to site class, two sites on soft and stiff soil are taken into account. Two alternative site amplification functions known as generic and theoretical site amplifications are examined for these two sites. The reinforced concrete frames located on soft soil display larger fragilities than those on stiff soil. Theoretical site amplification mostly leads to larger fragilities than generic site amplification more evidently for reinforced concrete buildings. Additionally, structural variability of ESDOFs is generally observed to increase the fragility especially for rigid structural models.

Seismic fragility of regular masonry buildings for in-plane and out-of-plane failure

  • Karantoni, Fillitsa;Tsionis, Georgios;Lyrantzaki, Foteini;Fardis, Michael N.
    • Earthquakes and Structures
    • /
    • v.6 no.6
    • /
    • pp.689-713
    • /
    • 2014
  • The seismic vulnerability of stone masonry buildings is studied on the basis of their fragility curves. In order to account for out-of-plane failure modes, normally disregarded in past studies, linear static Finite Element analysis in 3D of prototype regular buildings is performed using a nonlinear biaxial failure criterion for masonry. More than 1100 analyses are carried out, so as to cover the practical range of the most important parameters, namely the number of storeys, percentage of side length in exterior walls taken up by openings, wall thickness, plan dimensions and number of interior walls, type of floor and pier height-to-length ratio. Results are presented in the form of damage and fragility curves. The fragility curves correspond well to the damage observed in masonry buildings after strong earthquakes and are in good agreement with other fragility curves in the literature. They confirm what is already known, namely that buildings with stiff floors or higher percentage of load-bearing walls are less vulnerable, and that large openings, taller storeys, larger number of storeys, higher wall slenderness and higher ratio of clear height to horizontal length of walls increase the vulnerability, but show also by how much.

Reevaluation of Seismic Fragility Parameters of Nuclear Power Plant Components Considering Uniform Hazard Spectrum

  • Park, In-Kil;Choun, Young-Sun;Seo, Jeong-Moon;Yun, Kwan-Hee
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.586-595
    • /
    • 2002
  • The Seismic probabilistic risk assessment (SPRA) or seismic margin assessment (SMA) have been used for the seismic safety evaluation of nuclear power plant structures and equipments. For the SPRA or SMA, the reference response spectrum should be defined. The site-specific median spectrum has been generally used for the seismic fragility analysis of structures and equipments in a Korean nuclear power plant Since the site-specific spectrum has been developed based on the peak ground motion parameter, the site-specific response spectrum does not represent the same probability of exceedance over the entire frequency range of interest. The uniform hazard spectrum is more appropriate to be used in seismic probabilistic risk assessment than the site- specific spectrum. A method for modifying the seismic fragility parameters that are calculated based on the site-specific median spectrum is described. This simple method was developed to incorporate the effects of the uniform hazard spectrum. The seismic fragility parameters of typical NPP components are modified using the uniform hazard spectrum. The modification factor is used to modify the original fragility parameters. An example uniform hazard spectrum is developed using the available seismic hazard data for the Korean nuclear power plant (NPP) site. This uniform hazard spectrum is used for the modification of fragility parameters.

Development of Fragility Curves of Concrete Bridges (콘크리트 교량의 손상도 곡선 개발)

  • 김상훈;김두희;서형렬;김종인
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.319-325
    • /
    • 2003
  • The fragility curves of seismic retrofitted bridges by steel jacketing of bridge columns and restrainers at expansion joints after the 1994 Northridge earthquake are developed. Fragility curves are represented by lognormal distribution functions with two parameters(fragility parameters consisting of median and log-standard deviation) and developed as a function of peak ground acceleration (PGA). Two parameters in the lognormal distribution are estimated by the maximum likelihood method. The sixty ground acceleration time histories for Los Angeles area developed for FEMA SAC project are used for the dynamic analysis of the bridges and a computer code is developed to calculate hysterestic parameters of bridge columns before and after steel jacketing. The effect of retrofit is expressed in terms of the increase of the median value of the fragility curve for the retrofitted bridge from that of the bridge before retrofit. The comparison of fragility curves of the bridges before and after column retrofit demonstrates that the improvement of the bridges with steel jacketing on the seismic performance is excellent for the damage states defined in this study. The comparison of fragility curves of the bridges before and after restrainers at expansion joints also shows the improvement in the seismic performance of restrained bridges for the severe damage states.

  • PDF

The accuracy of fragility curves of the steel moment-resisting frames and SDOF systems

  • Yaghmaei-Sabegh, Saman;Jafari, Ali;Eghbali, Mahdi
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.243-259
    • /
    • 2021
  • In the present paper, a Monte Carlo-based framework is developed to investigate the accuracy and reliability of analytical fragility curves of steel moment-resisting frames and simple SDOF systems. It is also studied how the effectiveness of incremental dynamic analysis (IDA) and multiple stripes analysis (MSA) approaches, as two common nonlinear dynamic analysis methods, are influenced by the number of records and analysis stripes in fragility curves producing. Results showed that the simple SDOF systems do not provide accurate and reliable fragility curves compared with realistic steel moment-resisting structures. It is demonstrated that, the effectiveness of nonlinear dynamic analysis approaches is dependent on the fundamental period of structures, where in short-period structures, IDA is found to be more effective approach compared with MSA. This difference between the effectiveness of two analysis approaches decreases as the fundamental period of structures become longer. Using of 2 or 3 analysis stripes in MSA approach leads to significant inaccuracy and unreliability in the estimated fragility curves. Additionally, 15 number of ground motion records is recommended as a threshold of significant unreliability in estimated fragility curves, constructed by MSA.

An extended cloud analysis method for seismic fragility assessment of highway bridges

  • Sfahani, Mohammad Ghalami;Guan, Hong
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.605-616
    • /
    • 2018
  • In this paper, an extended Cloud analysis method is developed for seismic fragility assessment of existing highway bridges in the southeast Queensland region. This method extends the original Cloud analysis dataset by performing scaled Cloud analyses. The original and scaled Cloud datasets are then paired to generate seismic fragility curves. The seismic hazard in this region is critically reviewed, and the ground motion records are selected for the time-history analysis based on various record selection criteria. A parametric highway bridge model is developed in the OpenSees analysis software, and a sampling technique is employed to quantify the uncertainties of highway bridges ubiquitous in this region. Technical recommendations are also given for the seismic performance evaluation of highway bridges in such low-to-moderate seismic zones. Finally, a probabilistic fragility study is conducted by performing a total of 8000 time-history analyses and representative bridge fragility curves are generated. It is illustrated that the seismic fragility curves generated by the proposed extended Cloud analysis method are in close agreement with those which are obtained by the rigorous incremental dynamic analysis method. Also, it reveals that more than 50% of highway bridges existing in southeast Queensland will be damaged subject to a peak ground acceleration of 0.14 g.

Seismic risk assessment of intake tower in Korea using updated fragility by Bayesian inference

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.317-326
    • /
    • 2019
  • This research aims to assess the tight seismic risk curve of the intake tower at Geumgwang reservoir by considering the recorded historical earthquake data in the Korean Peninsula. The seismic fragility, a significant part of risk assessment, is updated by using Bayesian inference to consider the uncertainties and computational efficiency. The reservoir is one of the largest reservoirs in Korea for the supply of agricultural water. The intake tower controls the release of water from the reservoir. The seismic risk assessment of the intake tower plays an important role in the risk management of the reservoir. Site-specific seismic hazard is computed based on the four different seismic source maps of Korea. Probabilistic Seismic Hazard Analysis (PSHA) method is used to estimate the annual exceedance rate of hazard for corresponding Peak Ground Acceleration (PGA). Hazard deaggregation is shown at two customary hazard levels. Multiple dynamic analyses and a nonlinear static pushover analysis are performed for deriving fragility parameters. Thereafter, Bayesian inference with Markov Chain Monte Carlo (MCMC) is used to update the fragility parameters by integrating the results of the analyses. This study proves to reduce the uncertainties associated with fragility and risk curve, and to increase significant statistical and computational efficiency. The range of seismic risk curve of the intake tower is extracted for the reservoir site by considering four different source models and updated fragility function, which can be effectively used for the risk management and mitigation of reservoir.

Fragility assessment for electric cabinet in nuclear power plant using response surface methodology

  • Tran, Thanh-Tuan;Cao, Anh-Tuan;Nguyen, Thi-Hong-Xuyen;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.894-903
    • /
    • 2019
  • An approach for collapse risk assessment is proposed to evaluate the vulnerability of electric cabinet in nuclear power plants. The lognormal approaches, namely maximum likelihood estimation and linear regression, are introduced to establish the fragility curves. These two fragility analyses are applied for the numerical models of cabinets considering various boundary conditions, which are expressed by representing restrained and anchored models at the base. The models have been built and verified using the system identification (SI) technique. The fundamental frequency of the electric cabinet is sensitive because of many attached devices. To bypass this complex problem, the average spectral acceleration $S_{\bar{a}}$ in the range of period that cover the first mode period is chosen as an intensity measure on the fragility function. The nonlinear time history analyses for cabinet are conducted using a suite of 40 ground motions. The obtained curves with different approaches are compared, and the variability of risk assessment is evaluated for restrained and anchored models. The fragility curves obtained for anchored model are found to be closer each other, compared to the fragility curves for restrained model. It is also found that the support boundary conditions played a significant role in acceleration response of cabinet.

Seismic fragility analysis of sliding artifacts in nonlinear artifact-showcase-museum systems

  • Liu, Pei;Li, Zhi-Hao;Yang, Wei-Guo
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.333-350
    • /
    • 2021
  • Motivated by the demand of seismic protection of museum collections and development of performance-based seismic design guidelines, this paper investigates the seismic fragility of sliding artifacts based on incremental dynamic analysis and three-dimensional finite element model of the artifact-showcase-museum system considering nonlinear behavior of the structure and contact interfaces. Different intensity measures (IMs) for seismic fragility assessment of sliding artifacts are compared. The fragility curves of the sliding artifacts in both freestanding and restrained showcases placed on different floors of a four-story reinforced concrete frame structure are developed. The seismic sliding fragility of the artifacts within a real-world museum subjected to bi-directional horizontal ground motions is also assessed using the proposed IM and engineering demand parameter. Results show that the peak floor acceleration including only values initiating sliding is an efficient IM. Moreover, the sliding fragility estimate for the artifact in the restrained showcase increases as the floor level goes higher, while it may not be true in the freestanding showcase. Furthermore, the artifact is more prone to sliding failure in the restrained showcase than the freestanding showcase. In addition, the artifact has slightly worse sliding performance subjected to bi-directional motions than major-component motions.