• Title/Summary/Keyword: Fracture rate

Search Result 1,367, Processing Time 0.029 seconds

The Effect of PWHT on Fracture Toughness in HAZ of Cr-Mo Steel (Cr-Mo鋼 熔接熱影響部 의 破壞靭性 에 미치는 熔接後 熱處理 의 影響)

  • 정세희;임재규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.97-103
    • /
    • 1984
  • Post weld heat treatment(PWHT) of weldment of the low alloy steel is carried out to remove residual stress existing in weldment and to improve fracture toughness, but it is often observed that there occurs grain boundary failure and that fracture toughness decreases in weld heat affected zone(HAZ)because of PWHT. In this paper, the effect of heating rate and holding time of PWHT on fracture toughness were evaluated by crack opening displacement (CDD)test and micro-hardness test under the constant stress simulated residual stress in HAZ of Cr-Mo steel. The experimental results are as follow; (1)Transition temperature of weld HAZ after PWHT was dependent upon heating rate greater than holding time, and fracture toughness was decreased with an increase of the heating rate. (2)Softening ration of the notch tip was increased with holding time within one hour and saturated after one hour, but under applied stress it was increasing continuously. (3)The average hardness value in weld HAZ was increased with heating rate of PWHT.

A Study on Analysis of Mode I interlaminar Fracture Toughness of Foam Core Sandwich Structures (FOAM CORE SANDWICH 구조재의 Mode I 층간분리 파괴인성의 해석에 관한 연구)

  • Son, Se-Won;Gwon, Dong-An;Hong, Seong-Hui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.81-86
    • /
    • 2000
  • This paper was carried out to investigate the characteristics of interlaminar fracture toughness of foam core sandwich structures under opening loading mode by using the double cantilever beam (DCB) specimens in Carbon/Epoxy and foam core composites. instead of using symmetric geometry of DCB specimen non-symmetric DCB specimen was used to calculate the interlaminar fracture toughness. Three approaches for calculating the energy release rate({{{{ {G }_{IC } }}}}) were compared. Fracture toughness of foam core sandwich structures by autoclave vacuum bagging and hotpress were compared and analyzed. Experiment nonlinear beam bending FEM method were performed. Suggested bonding surface compensation and equivalent area inertia moment was used to calculate the energy release rate in nonlinear analytical results. The conclusions among experimental nonlinear analytical and FEM results was observed. The vacuum bagging method was shown to be able to substitute method in stead of autoclave without serious loss of Mode I energy release rate({{{{ {G }_{IC }}}}}) to be able to substitute method in stead of autoclave without serious loss of Mode I energy release rate({{{{ {G }_{IC }}}}}).

  • PDF

Enhancing the ability of strain energy release rate criterion for fracture assessment of orthotropic materials under mixed-mode I/II loading considering the effect of crack tip damage zone

  • Khaji, Zahra;Fakoor, Mahdi
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.817-828
    • /
    • 2022
  • In this study, considering dissipated energy in fracture process zone (FPZ), a novel criterion based on maximum strain energy release rate (SER) for orthotropic materials is presented. General case of in-plane loading for cracks along the fibers is assumed. According to the experimental observations, crack propagation is supposed along the fibers and the reinforcement isotropic solid (RIS) concept is employed as a superior model for orthotropic materials. SER in crack initiation and propagation phases is investigated. Elastic properties of FPZ are extracted as a function of undamaged matrix media and micro-crack density. This criterion meaningfully links between dissipated energy due to toughening mechanisms of FPZ and the macroscopic fracture by defining stress intensity factors of the damaged zone. These coefficients are used in equations of maximum SER criterion. The effect of crack initiation angle and the damaged zone is considered simultaneously in this criterion and mode II stress intensity factor is extracted in terms of stress intensity factors of damage zone and crack initiation angle. This criterion can evaluate the effects of FPZ on the fracture behavior of orthotropic material. Good agreement between extracted fracture limit curves (FLC's) and available experimental data proves the ability of the new proposed criterion.

Current Status of Hip Fracture amongthe Elderly in Pusan (부산지역 노인들의 고관절골절발생실태에 관한 연구)

  • Kim, Yong-Kwon
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.1
    • /
    • pp.841-850
    • /
    • 2001
  • This study was conducted to find out current status and characteristics, so that the result could provide basic data to establish prevention programs for hip fracture among the elderly. The data were coolected from 199 cases hospitalized in 4 university hospitals in Pusan during three years period from January, 1966 to December, 1998. The data were obtained from medical records and by using questionnaires through telephone contact or direct personal interview with the subjects or their family, and were analyzed with x2-test. The results were as follow: The mean age of elderly hip fractured cases was 75.7 years, and 61.8% were female. The average hospital stay of the cases was 30.8 days, and 73.9% survived. Femur neck fracture cases comprised 51.7% of the toral cases, while trochanteric fracture cases comprised 48.3%. The hip fracture occurred more frequently during the day, shown as 66.9%, and the most frequently due to trips(44.2%), followed by slips(322%), c1ash(14.6%), dizziness(7.5%), and 00 on. Femur neck fracture, however, occurred the most frequently due to trips(51.5%) and, on the other hand, trochanteric fracture due to slips(40.6%) and trips(36.5%). About two third of hip fracture(67.8%) occurred inside of the building. The most frequently mentioned location for hip fractures was rooms or floors(32.1%), followed by streets(24.1%), bathrooms(17.6%), stairways(13.1%), and so on. Trochanteric fracture, especially, more frequently occurred inside of the building(71.9%) as compared to femur neck fracture(64.1 %). The rate of independent indoor walking in femur neck fractured cases reduced from 88.3% to 74.8% after fracture incidences, while the rate reduced from 86.0% to 45.8% in trochanteric fracture cases. It indicated that trochanteric fractures affected the walking ability of the elderly more severely that femur neck fractures. In conclusion, hip fracture occurs as a combined result of aging characteristics, environmental factors, and health related characteristics. Future studies that investigaterisk factors of hip fracture in elderly are recommended.

  • PDF

Enhancement of fluid flow performance through deep fractured rocks in an insitu leaching potential mine site using discrete fracture network (DFN)

  • Yao, Wen-li;Mostafa, Sharifzadeh;Ericson, Ericson;Yang, Zhen;Xu, Guang;Aldrich, Chris
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.585-594
    • /
    • 2019
  • In-situ leaching could be one of the promising mining methods to extract the minerals from deep fractured rock mass. Constrained by the low permeability at depth, however, the performance does not meet the expectation. In fact, the rock mass permeability mainly depends on the pre-existing natural fractures and therefore play a crucial role in in-situ leaching performance. More importantly, fractures have various characteristics, such as aperture, persistence, and density, which have diverse contributions to the promising method. Hence, it is necessary to study the variation of fluid rate versus fracture parameters to enhance in-situ leaching performance. Firstly, the subsurface fractures from the depth of 1500m to 2500m were mapped using the discrete fracture network (DFN) in this paper, and then the numerical model was calibrated at a particular case. On this basis, the fluid flow through fractured rock mass with various fracture characteristics was analyzed. The simulation results showed that with the increase of Fisher' K value, which determine the fracture orientation, the flow rate firstly decreased and then increased. Subsequently, as another critical factor affecting the fluid flow in natural fractures, the fracture transmissivity has a direct relationship with the flow rate. Sensitive study shows that natural fracture characteristics play a critical role in in-situ leaching performance.

A Study on the Interlaminar Fracture Toughness of Glass Fiber Reinforced Plastic Comosites (GFRP 복합재료의 층간파괴인성치에 관한 연구)

  • 박기호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.4
    • /
    • pp.410-420
    • /
    • 1999
  • The value of the mode I interlamina fracture toughness, GIC, is calculated by experimental compliance method, modified compliance method and beam theory. The value of the mode II interlamina fracture toughness, GIC, is evaluated by beam method, theory beam theory and compliance method. This paper describes the effect of load pint displacement rate and speicimen geometries for mode I and II interlaminar fracture toughness of glass fiber reinforced plastic composites by using double cantilever beam (DCB) and end notched flexure (ENF) specimen. For the load point displacement rate of increases whereas the value of 2,6 and 10 mm/min the value of GIC decrease as load point displacement rate increases whereas the value of GIC is found to be no significant effect. The value of GIC decreases as initial crack length increases. The fractured surface of the DCB and ENF samples are examined by scanning electron microscopy (SEM).

  • PDF

Effect of Grain Size on the Ballistic Performance of Alumina Ceramics (알루미나의 방탄특성에 대한 입경의 영향)

  • 백용기;강을손;정동익;최원봉
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.4
    • /
    • pp.312-318
    • /
    • 1992
  • Two kinds of alumina specimens with different grain size (1 and 51 $\mu\textrm{m}$) but same density were prepared by hot-pressing. Fracture strength and fracture toughness of these specimens at low strain rate, sonic velocity, and elastic property were evaluated. Ballistic performance against Cal. 50 AP projectile was characterized by thick-backing method by using A16061-T6 reference block. Mechanical properties measured at low strain rate showed that the specimen with samll grain (SG) were better than specimen with large grain (LG). Fracture strength and fracture toughness of LG specimen were 131 MPa and 3.01 MPa{{{{ SQRT { m} }}, but those of SG specimen were 349 and 4.23, respectively. Sonic velocity and elastic properties of these specimen were similar, but bulk velocity and bulk modulus were different at amount of 4 and 9%. The tendency of ballistic performance was not consistent with the mechnaical properties at low strain rate. The ballistic performance based on quantitative efficiency revealed that the LG specimen (5.13) was ballistically better than the SG specimen (4.00) in spite of their lower mechanical properties.

  • PDF

Numerical Ductile Tearing Simulation of Circumferential Cracked Pipe Tests under Dynamic Loading Conditions

  • Nam, Hyun-Suk;Kim, Ji-Soo;Ryu, Ho-Wan;Kim, Yun-Jae;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1252-1263
    • /
    • 2016
  • This paper presents a numerical method to simulate ductile tearing in cracked components under high strain rates using finite element damage analysis. The strain rate dependence on tensile properties and multiaxial fracture strain is characterized by the model developed by Johnson and Cook. The damage model is then defined based on the ductility exhaustion concept using the strain rate dependent multiaxial fracture strain concept. The proposed model is applied to simulate previously published three cracked pipe bending test results under two different test speed conditions. Simulated results show overall good agreement with experimental results.

Fracture Toughness Evaluation of Natural Gas Pipeline under the Cathodic Protection

  • Kim, Cheol-Man;Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.133-138
    • /
    • 2009
  • For the corrosion protection of the natural gas transmission pipelines, two methods are used, cathodic protection and coating technique. In the case of cathodic protection, defects are embrittled by occurring hydrogen at the crack tip or material surface. It is however very important to evaluate whether cracks in the embrittled area can grow or not, especially in weld metal. In this work, on the basis of elastic plastic fracture mechanics, we performed the CTOD testing with various test conditions, such as testing rate and potential. The CTOD of the base metal and the weld metal showed a strong dependence of the test conditions. The CTOD decreased with decreasing testing rate and with increasing cathodic potential. The morphology of the fracture surface showed the quasi-cleavage at low testing rate and cathodic overprotection. The low CTOD was caused by hydrogen embrittlement at crack tip.

Usefulness of Ultrasound-Guided Closed Reduction of Nasal Bone Fracture (비골골절의 비관혈적 정복술 중 사용한 초음파의 유용성)

  • Lee, Seong Pyo;Suhk, Jung Hoon;Choi, Won Suk;Kim, Tae Bum;Yang, Wan Suk
    • Archives of Craniofacial Surgery
    • /
    • v.9 no.1
    • /
    • pp.12-16
    • /
    • 2008
  • Purpose: Closed reduction is most common treatment method for nasal bone fracture but it requires secondary correction operation commonly. For preventing secondary revision, we applied ultrasonography during closed reduction of nasal bone fracture and examined the result of operation. Methods: 80 patients were sorted into 2 groups, ultrasound-guided closed reduction group(n=40) and manual closed reduction group(n=40). We classified the unilateral fracture involving lower 1/2 of nasal bone into type I, the bilateral fracture involving lower 1/2 of nasal bone into type III and the fracture of upper 1/2 of nasal bone into type III. The occurrence rate of overcorrection and undercorrection were evaluated by comparing preoperative and postoperative MDCT(Multi Direction Computed Tomography). Results: In manual closed reduction group, overcorrection were found in 4 patients and undercorrection were found in 3 patients. In ultrasound-guided closed reduction group, overcorrection was not observed and undercorrection was observed in 2 patients. Conclusion: Intraoperative ultrasound evaluation of nasal bone fracture resulted in reduced occurrence rate of secondary nasal deformities, showed easier detection of the fractured site and have superiority upon simple physical examination or simple x-ray.