• Title/Summary/Keyword: Fracture model

Search Result 1,293, Processing Time 0.03 seconds

Three dimensional finite element simulations of fracture tests using the Craft concrete model

  • Jefferson, A.D.;Barr, B.I.G.;Bennett, T.;Hee, S.C.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.261-284
    • /
    • 2004
  • Two enhancements to a recently developed plastic-damage-contact model for concrete are presented. The model itself, which uses planes of degradation that can undergo damage and separation but that can regain contact according to a contact law, is described. The first enhancement is a new damage evolution function which provides a completely smooth transition from the undamaged to the damaged state and from pre-peak to post-peak regions. The second is an improved contact function that governs the potential degree of contact with increasing opening on a crack plane. The use of a damage evolution function with a pre-peak has implications for the consistent tangent matrix/stress recovery algorithm developed for the model implementation, and amendments to this algorithm to accommodate the new function are described. A series of unpublished experimental tests on notched specimens undertaken in Cardiff in the mid 1990s are then described. These include notched beam tests as well as prismatic and cylindrical torsion tests. The tests are then considered in three dimensional finite element analyses using the modified Craft model implemented in the finite element program LUSAS. Comparisons between experimental and numerical data show reasonable agreement except that the numerical simulations do not fully describe the latter stages of the softening responses for the torsion examples. Finally, it is concluded that the torsion tests described provide useful benchmark examples for the validation of three-dimensional numerical models for concrete.

A Study of Strength Evaluation of Crankshaft Lifting Pin for Reducing Weight (대형 크랭크축 리프팅 핀의 경량화를 위한 강도평가 연구)

  • Jeon, Byung-Young;Kim, Byung-Joo;Park, Jong-Du
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.7-12
    • /
    • 2004
  • Large-sized pins are usually used to lift and handle large low speed diesel engine crankshaft. There has then been a need to reduce and optimize the weight of the traditionally used pins. Making an hole by cutting the inside of the pin out was investigated in view of static and fracture strength. To compensate the stress increase caused by the introduction of the inner hole, the groove in the circumferential direction pre-existing on the pin is to be removed. Finite element analysis was carried out for both the original model and weight reduced model. Stress intensity factors for semi-elliptical defects assumed on the pin for the original model and weight reduced model was calculated using the ASME method and compared with the fracture toughness test result of the pin material. The diameter of the cutting hole for the revised model was determined based on the analysis results.

  • PDF

Top-Down Crack Modeling of Asphalt Concrete based on a Viscoelastic Fracture Mechanics

  • Kuai, Hai Dong;Lee, Hyn-Jong;Zi, Goang-Seup;Mun, Sung-Ho
    • 한국도로학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.93-102
    • /
    • 2008
  • An energy based crack growth model is developed in this study to simulate the propagation of top-down cracking in asphalt pavements. A viscoelastic fracture mechanics approach, generalized J integral, is employed to model the crack growth of asphalt concrete. Laboratory fatigue crack propagation tests for three different asphalt mixtures are performed at various load levels, frequencies and temperatures. Disk-shaped specimens with a proper loading fixture and crack growth monitoring system are selected for the tests. It is observed from the tests that the crack propagation model based on the generalized J integral is independent of load levels and frequencies, while the traditional Paris' law model based on stress intensity factor is dependent of loading frequencies. However, both models are unable to take care of the temperature dependence of the mixtures. The fatigue crack propagation model proposed in this study has a good agreement between experimental and predicted crack growth lives, which implies that the energy based J integral could be a better parameter to describe fatigue crack propagation of viscoelastic materials such as asphalt mixtures.

  • PDF

Study on fracture behavior of polypropylene fiber reinforced concrete with bending beam test and digital speckle method

  • Cao, Peng;Feng, Decheng;Zhou, Changjun;Zuo, Wenxin
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.527-546
    • /
    • 2014
  • Portland cement concrete, which has higher strength and stiffness than asphalt concrete, has been widely applied on pavements. However, the brittle fracture characteristic of cement concrete restricts its application in highway pavement construction. Since the polypropylene fiber can improve the fracture toughness of cement concrete, Polypropylene Fiber-Reinforced Concrete (PFRC) is attracting more and more attention in civil engineering. In order to study the effect of polypropylene fiber on the generation and evolution process of the local deformation band in concrete, a series of three-point bending tests were performed using the new technology of the digital speckle correlation method for FRC notched beams with different volumetric contents of polypropylene fiber. The modified Double-K model was utilized for the first time to calculate the stress intensity factors of instability and crack initiation of fiber-reinforced concrete beams. The results indicate that the polypropylene fiber can enhance the fracture toughness. Based on the modified Double-K fracture theory, the maximum fracture energy of concrete with 3.2% fiber (in volume) is 47 times higher than the plain concrete. No effort of fiber content on the strength of the concrete was found. Meanwhile to balance the strength and resistant fracture toughness, concrete with 1.6% fiber is recommended to be applied in pavement construction.

A STUDY OF HYDRAULIC PROPERTIES IN A SINGLE FRACTURE WITH IN-PLANE HETEROGENEITY: AN EVALUATION USING OPTICAL MEASUREMENTS OF A TRANSPARENT REPLICA

  • Sawada, Atsushi;Sato, Hisashi
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • Experimental examinations for evaluating fracutres were conducted by using transparent replicas of a single fracture in order to obtain the fracture data to contribute to the methodlogy on how to improve the definitaion of representative parameter values used for a parallel plate fracture model. Quantitative aperture distribution and quantitative tracer concentration data at each point in time were obtained by measuring the attenuation of transmitted light through the fracture in high spatial resolution. the representative aperture values evaluated from the multiple different measurement methods, such as arithmetic mean of aperture distribution measured by the optical method, transport aperture evaluated from the tracer test, and average aperture evaluated from the fracture void volume measurement converged to a unique value that indicates the accuracy of this experimental study. The aperture data was employed for verifying the numerical simulation under the assuption of Local Cubic Law and showed that the calculated flow rate through the fracture is 10%-100% larger than hydraulic test results. The quantitative tracer concentration data is also very valuable for validating existing numerical code for advection dispersion transport in-plane heterogeneous fractures.

Evaluation of Fracture Toughness and the Micro-Fracture Mechanism of Porous Glass Composite by Using Acoustic Emission Technique (음향방출법을 이용한 글래스 복합재료의 파괴인성 및 미시파괴과정의 평가)

  • 정희돈;권영각;장래웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1388-1398
    • /
    • 1994
  • The fracture toughness and micro-fracture mechanisms of the porous glass and stainless fiber reinforced glass composite were evaluated by using the acoustice mission(AE) technique, fracture toughness $test(K_{IC})$ and the macroscopic observation of the specimen surface which was being under the loading. At initial portion of the loading, the AE signals with low energy, of which origins were considered as the micro-cracks formated at the crack tip, were emitted. With increasing the applied load, AE signals having higher energies were generated due to the coalesence of micro-cracks and fast fracture. Based on the such relationship between AE emission and loading condition, fracture toughness $K_{IAE}$ could be defined successfully be using the $K_I$ value corresponding to an abrupt change of the accumulated AE signal energies emitted during the fracture toughness test. In spite of its brittleness of glass material, nonlinear deformation behavior before maximum load was observed due to the formation of micro-cracks. Further, the stainless fiber may have attributed to the improvement of fracture toughness and the resistance to crack propagation comparing to noncomposited materials Finally, models of the micro-fracture process combined with the AE sources for the porous glass material and its composite were proposed paying attention to the micro-crack nucleation and its coalescence at the crack tip. Fiber fracture and its Pullout, deformation of fiber itself were also delinated from the model.

Multi-Scale Heterogeneous Fracture Modeling of Asphalt Mixture Using Microfabric Distinct Element Approach

  • Kim Hyun-Wook;Buttler William G.
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.139-152
    • /
    • 2006
  • Many experimental and numerical approaches have been developed to evaluate paving materials and to predict pavement response and distress. Micromechanical simulation modeling is a technology that can reduce the number of physical tests required in material formulation and design and that can provide more details, e.g., the internal stress and strain state, and energy evolution and dissipation in simulated specimens with realistic microstructural features. A clustered distinct element modeling (DEM) approach was implemented In the two-dimensional particle flow software package (PFC-2D) to study the complex behavior observed in asphalt mixture fracturing. The relationship between continuous and discontinuous material properties was defined based on the potential energy approach. The theoretical relationship was validated with the uniform axial compression and cantilever beam model using two-dimensional plane strain and plane stress models. A bilinear cohesive displacement-softening model was implemented as an intrinsic interface and applied for both homogeneous and heterogeneous fracture modeling in order to simulate behavior in the fracture process zone and to simulate crack propagation. A disk-shaped compact tension test (DC(T)) with heterogeneous microstructure was simulated and compared with the experimental fracture test results to study Mode I fracture. The realistic arbitrary crack propagation including crack deflection, microcracking, crack face sliding, crack branching, and crack tip blunting could be represented in the fracture models. This micromechanical modeling approach represents the early developmental stages towards a 'virtual asphalt laboratory,' where simulations of laboratory tests and eventually field response and distress predictions can be made to enhance our understanding of pavement distress mechanisms, such its thermal fracture, reflective cracking, and fatigue crack growth.

  • PDF

Interpretation of Subsurface Fracture Characteristics by Fracture Mapping and Geophysical Loggings (단열조사 및 물리검층을 통한 지표 하 단열특성 해석)

  • Chae, Byung-Gon;Lee, Dae-Ha;Kim, Yu-Sung;Hwang, Se-Ho;Kee, Weon-Seo;Kim, Won-Young;Lee, Seung-Gu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.37-56
    • /
    • 2001
  • As a preliminary study to establish fracture network model in crystalline rocks, detail investigation on fracture characteristics were performed. Five fracture sets were determined on the basis of regional survey of geological structures and fractures on outcrops. Among the fracture sets, S1 set has the highest density and longest trace length of fractures which was identified on surface in the study area. S4 and S5 sets are composed of foliations and foliation parallel shear joints of gneisses, which are very important sets at the aspect of weighting of fracture length. For characterization of subsurface fractures, detail core logging was performed to identify fractures and fracture zones from five boreholes. Acoustic televiewer logging and borehole geophysical loggings produced images, orientations and geophysical properties of fractures which intersect with boreholes. According to the result of the investigations, subsurface fractures can be grouped as three preferred orientations(B1, B2 and B3), which correspond to S1, S2 and S4/S5 of surface fracture sets, respectively. Actually, B1 set is expected to be intensely developed at subsurface. However, it has low frequency of intersection with boreholes due to its parallel or sub-parallel direction to boreholes. According to the inference of conductive fractures, B1 and B3 sets have possibilities of water flow and their intersection lines are also thought to consist of important conduits of groundwater flow. In particular, faults which are parallel to foliations control major groundwater flow in the study area.

  • PDF

Models for Relative Density and Compressive Strength of Open-Cell Ceramics with Hollow Struts (공동골격을 가진 개방셀 세라믹스의 상대밀도와 압축강도 모델)

  • 정한남;현상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1139-1150
    • /
    • 1997
  • A model for predicting the relative density and the compressive strength of open-cell ceramics with three-dimensional network structure was proposed through the interpretation of their macrostructure and fracture mechanics. The equation predicting the relative density was derived under the assumption that the open-cell structure was a periodic array of the tetrakaidecahedron unit cell consisting of cylindrical struts containing the internal hollow with the shape of a triangular prism. The model for compressive strength of open-cell ceramics with the hollow strut was also developed by modifying conventional model which based on fracture behavior of them subjected to the compressive stress. Both the relative density and the compressive strength were expressed in terms of the ratio of the strut diameter to the length together with the ratio of the hollow size to the strut diameter. The proposed model for the relative density and the compressive strength of the alumina-zirconia composite with open-cell structure were accorded well with the experimental values, whereas Gibson-Ashby and Zhang's model did not show such a good agreement.

  • PDF

A STUDY ON AMALGAM CAVITY FRACTURE WITH THREE DIMENSIONAL FINITE ELEMENT METHOD (아말감 와동의 파절에 관한 3차원 유한요소법적 연구)

  • Kim, Han-Wook;Um, Chung-Moon;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.345-371
    • /
    • 1994
  • Restorative procedures can lead to weakening tooth due to reduction and alteraton of tooth structure. It is essential to prevent fractures to conserve tooth. Among the several parameters in cavity designs, cavity isthmus and depth are very important. In this study, MO amalgam cavity was prepared on maxillary first premolar. Three dimensional. finite element models were made by serial photographic method and cavity depth(1.7mm, 2.4mm) and isthmus (11 4, 1/3, 1/2 of intercuspal distance) were varied. linear, eight and six-nodal, isoparametric brick elements were used for the three dimensional finite element model. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. Three types model(B, G and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall. Both compressive and tensile forces were distributed directly to the adjacent regions. G model(Gap Distance: 0.000001mm) was assumed the possibility of play at the interface simulated the lack of real bonding between the amalgam and cavity wall (enamel and dentin). When compression occurred along the interface, the forces were transferred to the adjacent regions. However, tensile forces perpendicular to the interface were excluded. R model was assumed non-connection between the restoration and cavity wall. No force was transferred to the adjacent regions. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, von Mises stress, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as follows: 1. G model showed stress and strain patterns between Band R model. 2. B model and G model showed the bending phenomenon in the displacement. 3. R model showed the greatest amount of the displacement of the buccal cusp followed by G and B model in descending order. G model showed the greatest amount of the displacement of the lingual cusp followed by B and R model in descending order. 4. B model showed no change of the displacement as increasing depth and width of the cavity. G and R model showed greater displacement of the buccal cusp as increasing depth and width of the cavity, but no change in the displacement of the lingual cusp. 5. As increasing of the width of the cavity, stress and strain were not changed in B model. Stress and strain were increased on the distal marginal ridge and buccopulpal line angle in G and R model. The possibility of the tooth fracture was increased. 6. As increasing of the depth of the cavity, stress and strain were not changed in B and G model. Stress and strain were increased on the distal marginal ridge and buccopulpal line angle in R model. The possibility of the tooth fracture was increased.

  • PDF